Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Psychiatry ; 15: 166, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198696

RESUMO

BACKGROUND: Antipsychotic prescription information is commonly derived from structured fields in clinical health records. However, utilising diverse and comprehensive sources of information is especially important when investigating less frequent patterns of medication prescribing such as antipsychotic polypharmacy (APP). This study describes and evaluates a novel method of extracting APP data from both structured and free-text fields in electronic health records (EHRs), and its use for research purposes. METHODS: Using anonymised EHRs, we identified a cohort of patients with serious mental illness (SMI) who were treated in South London and Maudsley NHS Foundation Trust mental health care services between 1 January and 30 June 2012. Information about antipsychotic co-prescribing was extracted using a combination of natural language processing and a bespoke algorithm. The validity of the data derived through this process was assessed against a manually coded gold standard to establish precision and recall. Lastly, we estimated the prevalence and patterns of antipsychotic polypharmacy. RESULTS: Individual instances of antipsychotic prescribing were detected with high precision (0.94 to 0.97) and moderate recall (0.57-0.77). We detected baseline APP (two or more antipsychotics prescribed in any 6-week window) with 0.92 precision and 0.74 recall and long-term APP (antipsychotic co-prescribing for 6 months) with 0.94 precision and 0.60 recall. Of the 7,201 SMI patients receiving active care during the observation period, 338 (4.7 %; 95 % CI 4.2-5.2) were identified as receiving long-term APP. Two second generation antipsychotics (64.8 %); and first -second generation antipsychotics were most commonly co-prescribed (32.5 %). CONCLUSIONS: These results suggest that this is a potentially practical tool for identifying polypharmacy from mental health EHRs on a large scale. Furthermore, extracted data can be used to allow researchers to characterize patterns of polypharmacy over time including different drug combinations, trends in polypharmacy prescribing, predictors of polypharmacy prescribing and the impact of polypharmacy on patient outcomes.


Assuntos
Antipsicóticos/uso terapêutico , Registros Eletrônicos de Saúde/estatística & dados numéricos , Transtornos Mentais/tratamento farmacológico , Polimedicação , Adulto , Registros Eletrônicos de Saúde/normas , Humanos , Londres/epidemiologia , Transtornos Mentais/epidemiologia , Padrões de Prática Médica/estatística & dados numéricos , Prevalência
2.
PLoS One ; 7(5): e36888, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662130

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) require large sample sizes to obtain adequate statistical power, but it may be possible to increase the power by incorporating complementary data. In this study we investigated the feasibility of automatically retrieving information from the medical literature and leveraging this information in GWAS. METHODS: We developed a method that searches through PubMed abstracts for pre-assigned keywords and key concepts, and uses this information to assign prior probabilities of association for each single nucleotide polymorphism (SNP) with the phenotype of interest--the Adjusting Association Priors with Text (AdAPT) method. Association results from a GWAS can subsequently be ranked in the context of these priors using the Bayes False Discovery Probability (BFDP) framework. We initially tested AdAPT by comparing rankings of known susceptibility alleles in a previous lung cancer GWAS, and subsequently applied it in a two-phase GWAS of oral cancer. RESULTS: Known lung cancer susceptibility SNPs were consistently ranked higher by AdAPT BFDPs than by p-values. In the oral cancer GWAS, we sought to replicate the top five SNPs as ranked by AdAPT BFDPs, of which rs991316, located in the ADH gene region of 4q23, displayed a statistically significant association with oral cancer risk in the replication phase (per-rare-allele log additive p-value [p(trend)] = 2.5×10(-3)). The combined OR for having one additional rare allele was 0.83 (95% CI: 0.76-0.90), and this association was independent of previously identified susceptibility SNPs that are associated with overall UADT cancer in this gene region. We also investigated if rs991316 was associated with other cancers of the upper aerodigestive tract (UADT), but no additional association signal was found. CONCLUSION: This study highlights the potential utility of systematically incorporating prior knowledge from the medical literature in genome-wide analyses using the AdAPT methodology. AdAPT is available online (url: http://services.gate.ac.uk/lld/gwas/service/config).


Assuntos
Cromossomos Humanos Par 4 , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla , Neoplasias Bucais/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Predisposição Genética para Doença , Humanos , Internet , Neoplasias Pulmonares/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA