Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(18): 9610-6, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26933035

RESUMO

Protein glycation refers to the reversible reaction between aldoses (or ketoses) and amino groups yielding relatively stable Amadori (or Heyns) products. Consecutive oxidative cleavage reactions of these products or the reaction of amino groups with other reactive substances (e.g. α-dicarbonyls) yield advanced glycation end products (AGEs) that can alter the structures and functions of proteins. AGEs have been identified in all organisms, and their contents appear to rise with some diseases, such as diabetes and obesity. Here, we report a pilot study using highly sensitive and specific proteomics approach to identify and quantify AGE modification sites in plasma proteins by reversed phase HPLC mass spectrometry in tryptic plasma digests. In total, 19 AGE modification sites corresponding to 11 proteins were identified in patients with type 2 diabetes mellitus under poor glycemic control. The modification degrees of 15 modification sites did not differ among cohorts of normoglycemic lean or obese and type 2 diabetes mellitus patients under good and poor glycemic control. The contents of two amide-AGEs in human serum albumin and apolipoprotein A-II were significantly higher in patients with poor glycemic control, although the plasma levels of both proteins were similar among all plasma samples. These two modification sites might be useful to predict long term, AGE-related complications in diabetic patients, such as impaired vision, increased arterial stiffness, or decreased kidney function.


Assuntos
Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Produtos Finais de Glicação Avançada/sangue , Processamento de Proteína Pós-Traducional , Humanos , Projetos Piloto
2.
J Biol Chem ; 291(14): 7621-36, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26786108

RESUMO

Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome ofBrassica napusand characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made withArabidopsis thaliana The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.


Assuntos
Brassica napus/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Brassica napus/genética , Glicoproteínas/genética , Glicosilação , Proteínas de Plantas/genética , Proteoma/genética , Proteômica
3.
J Exp Bot ; 67(22): 6283-6295, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27856706

RESUMO

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Desidratação , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Monossacarídeos/metabolismo , Oxirredução , Proteoma/metabolismo , Transcriptoma
4.
Anal Bioanal Chem ; 408(20): 5557-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236317

RESUMO

Advanced glycation end products (AGEs) are posttranslational modifications formed non-enzymatically from the reaction of carbohydrates and their degradation products with proteins. Accumulation of AGEs is associated with the progression of severe diabetic complications, for example, and elevated tissue levels of AGEs might even predict these pathologies. As AGE formation is often site-specific, mapping of these modification sites may reveal more sensitive and specific markers than the global tissue level. Here, 42 AGE modifications were identified in a bottom-up proteomic approach by tandem mass spectrometry, which corresponded to 36 sites in 22 high to medium abundant proteins in individual plasma samples obtained from type 2 diabetes mellitus (T2DM) patients with long disease duration (>10 years). Major modifications were glarg (11 modification sites) and carboxymethylation (5) of arginine and formylation (8), acetylation (7), and carboxymethylation (7) of lysine residues. Relative quantification of these sites in plasma samples obtained from normoglycemic individuals (n = 47) and patients with T2DM being newly diagnosed (n = 47) or of medium (2-5 years, n = 20) and long disease duration (>10 years, n = 20) did not reveal any significant differences.


Assuntos
Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Diabetes Mellitus Tipo 2/sangue , Produtos Finais de Glicação Avançada/sangue , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Biomarcadores/sangue , Produtos Finais de Glicação Avançada/química , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Proteome Res ; 14(2): 768-77, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25423611

RESUMO

Glycation refers to a nonenzymatic post-translational modification formed by the reaction of amino groups and reducing sugars. Consecutive oxidation and degradation can produce advanced glycation end products (AGEs), such as N(ε)-(carboxyethyl)lysine (CEL) and N(ε)-(carboxymethyl)lysine (CML). Although CEL and CML are considered to be markers of arteriosclerosis, diabetes mellitus, and aging, the modified proteins and the exact modification sites are mostly unknown due to their low frequency and a lack of enrichment strategies. Here, we report characteristic fragmentation patterns of CML- and CEL-containing peptides and two modification-specific reporter ions for each modification (CML, m/z 142.1 and 187.1; CEL, m/z 156.1 and 201.1). The protocol allowed sensitive and selective precursor ion scans to detect the modified peptides in complex sample mixtures. The corresponding m/z values identified eight CEL/CML-modification sites in glycated human serum albumin (HSA) by targeted nano-RPC-MS/MS. The same strategy revealed 21 CML sites in 17 different proteins, including modified lysine residues 88 and 396 of human serum albumin, in a pooled plasma sample that was obtained from patients with type 2 diabetes mellitus.


Assuntos
Proteínas Sanguíneas/química , Peptídeos/química , Tripsina/química , Sequência de Aminoácidos , Produtos Finais de Glicação Avançada/química , Humanos , Metilação , Espectrometria de Massas em Tandem
6.
Amino Acids ; 47(5): 1065-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712730

RESUMO

Glycation, or non-enzymatic glycosylation, is a common protein modification formed by reactions between reducing sugars (i.e. aldoses and ketoses) with protein amino groups. Resulting Amadori and Heyns compounds, respectively, can be oxidatively degraded yielding a structurally heterogeneous group of advanced glycation end-products. We have studied this process in aqueous conditions at 95 °C in terms of appearing products and their formation kinetics in the presence or absence of reactive oxygen species (ROS)-generating systems (iron(II) sulfate). RP-HPLC-ESI-MS revealed 20 products, 12 of which were confirmed after synthesis by identical retention times and fragmentation patterns. These products accumulated during the incubation period of 4 h (N(ε)-carboxymethyl-, N(ε)-formyl- and N(ε)-methyl lysine) or appeared intermediately (2-aminoadipic semialdehyde, N(ε)-ethanalyl lysine). Acidic and basic amino acid residues near the glycation site and elevated ROS levels in the reaction mixture had significant effects on both product formation and degradation kinetics.


Assuntos
Glucose/química , Produtos Finais de Glicação Avançada/química , Peptídeos/química , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/química , Cromatografia Líquida de Alta Pressão , Compostos Ferrosos/química , Glicosilação , Temperatura Alta , Cinética , Oxirredução , Espécies Reativas de Oxigênio/química , Soluções , Espectrometria de Massas por Ionização por Electrospray , Água/química
7.
J Chromatogr A ; 1443: 181-90, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27016113

RESUMO

Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research.


Assuntos
Cromatografia de Afinidade , Compostos Férricos/química , Ferro/química , Fosfoproteínas/química , Proteômica/métodos , Estearatos/química , Células HeLa , Humanos , Nanopartículas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Agric Food Chem ; 62(16): 3626-35, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24725187

RESUMO

Glycation refers to the reaction of amino groups, for example in proteins, with reducing sugars. Intermediately formed Amadori products can be degraded by oxidation (Maillard reactions) leading to a heterogeneous class of advanced glycation end-products (AGEs), especially during exposure to heat. AGEs are considered to be toxic in vivo due to their pronounced local and systemic inflammatory effects. At high temperatures, these reactions have been mostly investigated at the amino acid level. Here, we studied the formation of arginine-related AGEs in peptides under conditions simulating household cooking at physiological d-glucose concentrations. High quantities of AGE-modified peptides were produced within 15 min, especially glyoxal-derived products. The intermediately formed dihydroxy-imidazolidine yielded glyoxal- (Glarg) and methylglyoxal-derived hydro-imidazolinones (MG-H), with Glarg being further degraded to carboxymethyl-l-arginine (CMA). Carboxyethyl-l-arginine was not detected. The formation rates and yields were strongly increased in the presence of physiologically relevant concentrations of Fe(II)-ions and ascorbate. A nearby histidine residue increased the content of AGEs, whereas glutamic acid significantly reduced the CMA levels.


Assuntos
Arginina/química , Glucose/química , Produtos Finais de Glicação Avançada/química , Peptídeos/química , Glicosilação , Glioxal/química , Temperatura Alta , Reação de Maillard , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA