Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Cell ; 83(6): 994-1011.e18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36806354

RESUMO

All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.


Assuntos
Peptídeos , Biossíntese de Proteínas , Humanos , Fases de Leitura Aberta , Peptídeos/genética , Proteômica , Micropeptídeos
2.
Phys Chem Chem Phys ; 26(28): 19257-19265, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958634

RESUMO

In computational chemistry, accurately predicting molecular configurations that exhibit specific properties remains a critical challenge. Its intricacies become especially evident in the study of molecular aggregates, where the light-induced functionality is tied to highly structure-dependent electronic couplings between molecules. Here, we present an efficient strategy for the targeted screening of the structural space employing a "functionality optimization" technique, in which a chosen descriptor, constrained by the ground state energy expression, is optimized. The chosen algorithmic differentiation (AD) framework allows one to automatically obtain gradients without its tedious implementation. We demonstrate the effectiveness of the approach by identifying perylene bisimide (PBI) dimer motifs with enhanced effective SF coupling. Our findings reveal that certain structural modifications of the PBI monomer, such as helical twisting and bending as well as slipped-rotated packing arrangements, can significantly increase the effective SF coupling.

3.
BMC Neurosci ; 24(1): 19, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879191

RESUMO

BACKGROUND: Sexual differences in the biology of human stem cells are increasingly recognized to influence their proliferation, differentiation and maturation. Especially in neurodegenerative diseases such as Alzheimers disease (AD), Parkinson's disease (PD) or ischemic stroke, sex is a key player for disease progression and recovery of damaged tissue. Recently, the glycoprotein hormone erythropoietin (EPO) has been implicated as a regulator of neuronal differentiation and maturation in female rats. METHODS: In this study, we used adult human neural crest-derived stem cells (NCSCs) as a model system for exploring potential sex specific effects of EPO on human neuronal differentiation. We started with expression validation of the specific EPO receptor (EPOR) by performing PCR analysis in the NCSCs. Next, EPO mediated activation of nuclear factor-κB (NF-κB) via Immunocytochemistry (ICC) was performed, followed by investigating the sex-specific effects of EPO on neuronal differentiation by determining morphological changes in axonal growth and neurite formation accompanied by ICC. RESULTS: Undifferentiated male and female NCSCs showed a ubiquitous expression of the EPO receptor (EPOR). EPO treatment resulted in a statistically profound (male p = 0.0022, female p = 0.0012) nuclear translocation of NF-κB RELA in undifferentiated NCSCs of both sexes. But after one week of neuronal differentiation, we could show a highly significant (p = 0,0079) increase of nuclear NF-κB RELA in females only. In contrast, we observed a strong decrease (p = 0,0022) of RELA activation in male neuronal progenitors. Extending the view on the role of sex during human neuronal differentiation, here we demonstrate a significant increase of axon lengths in female NCSCs-derived neurons upon EPO-treatment (+ EPO: 167,73 (SD = 41,66) µm, w/o EPO: 77,68 (SD = 18,31) µm) compared to their male counterparts (+ EPO: 68,37 (SD = 11,97) µm, w/o EPO: 70,23 (SD = 12,89) µm). CONCLUSION: Our present findings therefore show for the first time an EPO-driven sexual dimorphism in neuronal differentiation of human neural-crest derived stem cells and emphasize sex-specific variability as a crucial parameter in stem cell biology and for treating neurodegenerative diseases.


Assuntos
Eritropoetina , NF-kappa B , Humanos , Adulto , Feminino , Masculino , Animais , Ratos , Crista Neural , Eritropoetina/farmacologia , Caracteres Sexuais , Diferenciação Celular
4.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361720

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Imunoterapia , Linhagem Celular Tumoral
5.
Biotechnol Bioeng ; 118(6): 2348-2359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751545

RESUMO

Exposure of Chinese hamster ovary cells (CHO) to highly concentrated feed solution during fed-batch cultivation is known to result in an unphysiological osmolality increase (>300 mOsm/kg), affecting cell physiology and morphology. Extending previous observation on osmotic adaptation, the present study investigates for the first time potential effects of hyperosmolality on CHO cells on both population and single-cell level. We intentionally exposed CHO cells to hyperosmolality of up to 545 mOsm/kg during fed-batch cultivation. In concordance with existing research data, hyperosmolality-exposed CHO cells showed a nearly triplicated volume accompanied by ablation of proliferation. On the molecular level, we observed a strong hyperosmolality-dependent increase in mitochondrial activity in CHO cells compared to control. In contrast to mitochondrial activity, hyperosmolality-dependent proliferation arrest of CHO cells was not accompanied by DNA accumulation or caspase-3/7-mediated apoptosis. Notably, we demonstrate for the first time a formation of up to eight multiple, small nuclei in single hyperosmolality-stressed CHO cells. The here presented observations reveal previously unknown hyperosmolality-dependent morphological changes in CHO cells and support existing data on the osmotic response in mammalian cells.


Assuntos
Células CHO , Tamanho Celular , Concentração Osmolar , Animais , Apoptose , Técnicas de Cultura Celular por Lotes , Ciclo Celular , Proliferação de Células , Cricetulus , Potencial da Membrana Mitocondrial , Microscopia Confocal , Mitocôndrias/fisiologia , Osmose , Análise de Célula Única
6.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502475

RESUMO

Neuroprotection from oxidative stress is critical during neuronal development and maintenance but also plays a major role in the pathogenesis and potential treatment of various neurological disorders and neurodegenerative diseases. Emerging evidence in the murine system suggests neuroprotective effects of blood plasma on the aged or diseased brain. However, little is known about plasma-mediated effects on human neurons. In the present study, we demonstrate the neuroprotective effect mediated by human plasma and the most abundant plasma-protein human serum albumin against oxidative stress in glutamatergic neurons differentiated from human neural crest-derived inferior turbinate stem cells. We observed a strong neuroprotective effect of human plasma and human serum albumin against oxidative stress-induced neuronal death on the single cell level, similar to the one mediated by tumor necrosis factor alpha. Moreover, we detected neuroprotection of plasma and human serum albumin against kainic acid-induced excitatory stress in ex vivo cultured mouse hippocampal tissue slices. The present study provides deeper insights into plasma-mediated neuroprotection ultimately resulting in the development of novel therapies for a variety of neurological and, in particular, neurodegenerative diseases.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Plasma , Animais , Feminino , Humanos , Masculino , Camundongos
7.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1025-1033, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29630899

RESUMO

TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2-/- cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.


Assuntos
Apoptose , Quinase I-kappa B/imunologia , NF-kappa B/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Quinase I-kappa B/genética , Transdução de Sinais
8.
Nanomedicine ; 17: 319-328, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771503

RESUMO

Bone regeneration is a highly orchestrated process crucial for endogenous healing procedures after accidents, infections or tumor therapy. Changes in surface nanotopography are known to directly affect the formation of osteogenic cell types, although no direct linkage to the endogenous nanotopography of bone was described so far. Here we show the presence of pores of 31.93 ±â€¯0.97 nm diameter on the surface of collagen type I fibers, the organic component of bone, and demonstrate these pores to be sufficient to induce osteogenic differentiation of adult human stem cells. We further applied SiO2 nanoparticles thermally cross-linked to a nanocomposite to artificially biomimic 31.93 ±â€¯0.97 nm pores, which likewise led to in vitro production of bone mineral by adult human stem cells. Our findings show an endogenous mechanism of directing osteogenic differentiation of adult stem cells by nanotopological cues and provide a direct application using SiO2 nanocomposites with surface nanotopography biomimicking native bone architecture.


Assuntos
Células-Tronco Adultas/citologia , Colágeno Tipo I/ultraestrutura , Nanoporos/ultraestrutura , Osteogênese , Adulto , Materiais Biocompatíveis/química , Regeneração Óssea , Células Cultivadas , Colágeno Tipo I/química , Humanos , Nanocompostos/química , Nanocompostos/ultraestrutura , Porosidade , Dióxido de Silício/química , Alicerces Teciduais/química
9.
Clin Sci (Lond) ; 130(15): 1339-52, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129189

RESUMO

The common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial superinfections, resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential for 1,8-cineole to treat primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates poly(I:C)-induced activity of the antiviral transcription factor interferon regulatory factor 3 (IRF3), while simultaneously reducing proinflammatory nuclear factor (NF)-κB activity in human cell lines, inferior turbinate stem cells (ITSCs) and in ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared with poly(I:C) alone, whereas NF-κB activity was reduced. Accordingly, 1,8-cineole- and poly(I:C) treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared with the poly(I:C) treatment approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with lipopolysaccharide (LPS) and 1,8-cineole compared with the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on proinflammatory NF-κB signalling, and may thus broaden its field of application.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Cicloexanóis/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Fator Regulador 3 de Interferon/metabolismo , Monoterpenos/farmacologia , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Linhagem Celular , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Relação Dose-Resposta a Droga , Eucaliptol , Humanos , Lipopolissacarídeos/farmacologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Poli I-C , Polinucleotídeos/farmacologia , Interferência de RNA , Rinite/imunologia , Rinite/metabolismo , Rinite/virologia , Sinusite/imunologia , Sinusite/metabolismo , Sinusite/virologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células-Tronco/virologia , Fatores de Tempo , Técnicas de Cultura de Tecidos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transfecção , Conchas Nasais/efeitos dos fármacos , Conchas Nasais/metabolismo , Conchas Nasais/virologia
10.
Faraday Discuss ; 184: 163-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26416773

RESUMO

We propose a scheme to increase the sensitivity and thus the detection volume of nanoscale single molecule magnetic resonance imaging. The proposal aims to surpass the T1 limited detection of the sensor by taking advantage of a long-lived ancillary nuclear spin to which the sensor is coupled. We show how this nuclear spin takes over the role of the sensor spin, keeping the characteristic time-scales of detection on the same order but with a longer life-time allowing it to detect a larger volume of the sample, which is not possible by the sensor alone.

11.
Biochim Biophys Acta ; 1833(12): 2866-2878, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872422

RESUMO

Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.


Assuntos
Núcleo Celular/metabolismo , Cicloexanóis/farmacologia , Monoterpenos/farmacologia , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloexanóis/química , Eucaliptol , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Monoterpenos/química , Inibidor de NF-kappaB alfa , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Histochem Cell Biol ; 142(1): 91-101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24519400

RESUMO

We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.


Assuntos
Modelos Moleculares , Imagem Molecular/métodos , Multimerização Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Membrana Celular/metabolismo , Células HeLa , Humanos , Ligantes , Microscopia de Fluorescência , Receptores Tipo I de Fatores de Necrose Tumoral/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fator de Necrose Tumoral alfa/química
13.
Biol Chem ; 394(12): 1623-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084358

RESUMO

Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.


Assuntos
Aneuploidia , Diferenciação Celular , Hipocampo/citologia , Células-Tronco Neurais/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo
14.
Sci Rep ; 13(1): 1685, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717636

RESUMO

We investigate a family of hexagonal 2D covalent organic frameworks (COFs) with phenyl and biphenyl spacer units and different chemical linker species. Chemical trends are elucidated and attributed to microscopic properties of the [Formula: see text]-electron-system spanned by atomic [Formula: see text]-orbitals. We systematically investigate the electronic structure, delocalization of electronic states, effects of disorder, bond torsion, and doping, and correlate these with variable [Formula: see text]-conjugation and nucleus-independent chemical shift (NICS) aromaticity. Molecular orbitals are obtained from maximally localized Wannier functions that have [Formula: see text]- and [Formula: see text]-character, forming distinct [Formula: see text]- and [Formula: see text]-bands for all valence states. The Wannier-orbital description goes beyond simple tight-binding models and enables a detailed understanding of the electronic topology, effective electronic coupling and delocalization. It is shown that a meaningful comparison between COFs with different chemical elements can only be made by examining the entire [Formula: see text]-electron system, while a comparison of individual bands (e.g., bands near the Fermi energy) can be a insufficient to derive general design rules for linker and spacer monomer selection. We further identify delocalized states that are spread across tens or hundreds of pores of the 2D COFs and analyze their robustness against structural and energetic disorders like out-of-plane rotations of molecular fragments, different strength of energetic disorder and energetic shifts due to chemical doping.

15.
Parasitology ; 139(12): 1547-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23036150

RESUMO

The group of haemosporidian parasites is of general interest to basic and applied science, since several species infect mammals, leading to malaria and associated disease symptoms. Although the great majority of haemosporidian parasites appear in bird hosts, as in the case of Leucocytozoon buteonis, there is little genomic information about genetic aspects of their co-evolution with hosts. Consequently, there is a high need for parasite-enrichment strategies enabling further analyses of the genomes, namely without exposure to DNA-intercalating dyes. Here, we used flow cytometry without an additional labelling step to enrich L. buteonis from infected buzzard blood. A specific, defined area of two-dimensional scattergramms was sorted and the fraction was further analysed. The successful enrichment of L. buteonis in the sorted fraction was demonstrated by Giemsa-staining and qPCR revealing a clear increase of parasite-specific genes, while host-specific genes were significantly decreased. This is the first report describing a labelling-free enrichment approach of L. buteonis from infected buzzard blood. The enrichment of parasites presented here is free of nucleic acid-intercalating dyes which may interfere with fluorescence-based methods or subsequent sequencing approaches.


Assuntos
Citometria de Fluxo , Haemosporida/fisiologia , Parasitologia/métodos , Infecções Protozoárias em Animais/parasitologia , Animais , Falconiformes/parasitologia , Haemosporida/genética
16.
Front Mol Neurosci ; 15: 954541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983068

RESUMO

The transcription factor NF-κB is commonly known to drive inflammation and cancer progression, but is also a crucial regulator of a broad range of cellular processes within the mammalian nervous system. In the present review, we provide an overview on the role of NF-κB in the nervous system particularly including its constitutive activity within cortical and hippocampal regions, neuroprotection as well as learning and memory. Our discussion further emphasizes the increasing role of human genetics in neurodegenerative disorders, namely, germline mutations leading to defects in NF-κB-signaling. In particular, we propose that loss of function mutations upstream of NF-κB such as ADAM17, SHARPIN, HOIL, or OTULIN affect NF-κB-activity in Alzheimer's disease (AD) patients, in turn driving anatomical defects such as shrinkage of entorhinal cortex and the limbic system in early AD. Similarly, E3 type ubiquitin ligase PARKIN is positively involved in NF-κB signaling. PARKIN loss of function mutations are most frequently observed in Parkinson's disease patients. In contrast to AD, relying on germline mutations of week alleles and a disease development over decades, somatic mutations affecting NF-κB activation are commonly observed in cells derived from glioblastoma multiforme (GBM), the most common malignant primary brain tumor. Here, our present review particularly sheds light on the mutual exclusion of either the deletion of NFKBIA or amplification of epidermal growth factor receptor (EGFR) in GBM, both resulting in constitutive NF-κB-activity driving tumorigenesis. We also discuss emerging roles of long non-coding RNAs such as HOTAIR in suppressing phosphorylation of IκBα in the context of GBM. In summary, the recent progress in the genetic analysis of patients, particularly those suffering from AD, harbors the potential to open up new vistas for research and therapy based on TNFα/NF-κB pathway and neuroprotection.

17.
Biomedicines ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35203471

RESUMO

Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.

18.
Stem Cell Rev Rep ; 18(4): 1510-1520, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34748196

RESUMO

Adult human neural crest-derived stem cells (NCSCs) are found in a variety of adult tissues and show an extraordinary broad developmental potential. Despite their great differentiation capacity, increasing evidence suggest a remaining niche-dependent variability between different NCSC-populations regarding their differentiation behavior and expression signatures. In the present study, we extended the view on heterogeneity of NCSCs by identifying heterogeneous expression levels and protein amounts of characteristic markers even between NCSCs from the same niche of origin. In particular, populations of neural crest-derived inferior turbinate stem cells (ITSCs) isolated from different individuals showed significant variations in characteristic NCSC marker proteins Nestin, S100 and Slug in a donor-dependent manner. Notably, increased nuclear protein amounts of Slug were accompanied by a significantly elevated level of nuclear NF-κB-p65 protein, suggesting an NF-κB-dependent regulation of NCSC-makers. In addition to this interpopulational genetic heterogeneity of ITSC-populations from different donors, single ITSCs also revealed a strong heterogeneity regarding the protein amounts of Nestin, S100, Slug and NF-κB-p65 even within the same clonal culture. Our present findings therefor strongly suggest ITSC-heterogeneity to be at least partly based on an interpopulational genetic heterogeneity dependent on the donor accompanied by a stochastic intrapopulational heterogeneity between single cells. We propose this stochastic intrapopulational heterogeneity to occur in addition to the already described genetic variability between clonal NCSC-cultures and the niche-dependent plasticity of NCSCs. Our observations offer a novel perspective on NCSC-heterogeneity, which may build the basis to understand heterogeneous NCSC-behavior.


Assuntos
Crista Neural , Células-Tronco Neurais , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/genética , Humanos , NF-kappa B/metabolismo , Nestina/genética
19.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269444

RESUMO

Female sex is increasingly associated with a loss of bone mass during aging and an increased risk of developing nonunion fractures. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation in human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global transcriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrated craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.


Assuntos
Lisina , Osteogênese , Animais , Diferenciação Celular/genética , Feminino , Histona Desmetilases/genética , Humanos , Masculino , Antígenos de Histocompatibilidade Menor , RNA Interferente Pequeno/genética , Ratos , Crânio
20.
Cells ; 10(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440811

RESUMO

NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.


Assuntos
NF-kappa B/metabolismo , Células-Tronco/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , MicroRNAs/metabolismo , NF-kappa B/deficiência , NF-kappa B/genética , Transdução de Sinais , Células-Tronco/citologia , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA