Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 97(4): 431-436, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605356

RESUMO

Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to ethanol and has been linked to neurodevelopmental impairments. Alcohol has the potential to alter some of the epigenetic components that play a critical role during development. Previous studies have provided evidence that prenatal exposure to ethanol results in abnormal epigenetic patterns (i.e., hypomethylation) of the genome. The aim of this study was to determine how prenatal exposure to ethanol in rats affects the hippocampal levels of expression of two important brain epigenetic transcriptional regulators involved in synaptic plasticity and memory consolidation: methyl CpG-binding protein 2 (MeCP2) and histone variant H2A.Z. Unexpectedly, under the conditions used in this work we were not able to detect any changes in MeCP2. Interestingly, however, we observed a significant decrease in H2A.Z, accompanied by its chromatin redistribution in both female and male FASD rat pups. Moreover, the data from reverse-transcription qPCR later confirmed that this decrease in H2A.Z is mainly due to down-regulation of its H2A.Z-2 isoform gene expression. Altogether, these data provide strong evidence that prenatal exposure to ethanol alters histone variant H2A.Z during neurogenesis of rat hippocampus.


Assuntos
Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Animais , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Perfilação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Epigenetics ; 12(11): 934-944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099289

RESUMO

MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.


Assuntos
Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Células 3T3 , Animais , Células HEK293 , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Fosforilação , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA