Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Lipid Res ; 64(9): 100361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36958721

RESUMO

N-acyl taurines (NATs) are bioactive lipids with emerging roles in glucose homeostasis and lipid metabolism. The acyl chains of hepatic and biliary NATs are enriched in polyunsaturated fatty acids (PUFAs). Dietary supplementation with a class of PUFAs, the omega-3 fatty acids, increases their cognate NATs in mice and humans. However, the synthesis pathway of the PUFA-containing NATs remains undiscovered. Here, we report that human livers synthesize NATs and that the acyl-chain preference is similar in murine liver homogenates. In the mouse, we found that hepatic NAT synthase activity localizes to the peroxisome and depends upon an active-site cysteine. Using unbiased metabolomics and proteomics, we identified bile acid-CoA:amino acid N-acyltransferase (BAAT) as the likely hepatic NAT synthase in vitro. Subsequently, we confirmed that BAAT knockout livers lack up to 90% of NAT synthase activity and that biliary PUFA-containing NATs are significantly reduced compared with wildtype. In conclusion, we identified the in vivo PUFA-NAT synthase in the murine liver and expanded the known substrates of the bile acid-conjugating enzyme, BAAT, beyond classic bile acids to the synthesis of a novel class of bioactive lipids.


Assuntos
Ácidos e Sais Biliares , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Taurina/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Aciltransferases/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(49): 24770-24778, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740614

RESUMO

Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the N-acylethanolamines (NAEs) and N-acyl taurines (NATs), in central and peripheral tissues. A functional polymorphism in the human FAAH gene is linked to obesity and mice lacking FAAH show altered metabolic states, but whether these phenotypes are caused by elevations in NAEs or NATs is unknown. To overcome the problem of concurrent elevation of NAEs and NATs caused by genetic or pharmacological disruption of FAAH in vivo, we developed an engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity. The FAAH-S268D mice accordingly show substantial elevations in NATs without alterations in NAE content, a unique metabolic profile that correlates with heightened insulin sensitivity and GLP-1 secretion. We also show that N-oleoyl taurine (C18:1 NAT), the most abundant NAT in human plasma, decreases food intake, improves glucose tolerance, and stimulates GPR119-dependent GLP-1 and glucagon secretion in mice. Together, these data suggest that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.


Assuntos
Amidoidrolases/genética , Glicemia/metabolismo , Síndrome Metabólica/metabolismo , Ácidos Oleicos/metabolismo , Taurina/análogos & derivados , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Animais , Glicemia/análise , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Etanolaminas/sangue , Etanolaminas/metabolismo , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Injeções Intravenosas , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/sangue , Período Pós-Prandial/efeitos dos fármacos , Período Pós-Prandial/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Taurina/administração & dosagem , Taurina/sangue , Taurina/metabolismo
3.
J Biol Chem ; 293(43): 16724-16740, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190326

RESUMO

Fatty acid channeling into oxidation or storage modes depends on physiological conditions and hormonal signaling. However, the directionality of this channeling may also depend on the association of each of the five acyl-CoA synthetase isoforms with specific protein partners. Long-chain acyl-CoA synthetases (ACSLs) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs, which are then either oxidized or used in esterification reactions. In highly oxidative tissues, ACSL1 is located on the outer mitochondrial membrane (OMM) and directs fatty acids into mitochondria for ß-oxidation. In the liver, however, about 50% of ACSL1 is located on the endoplasmic reticulum (ER) where its metabolic function is unclear. Because hepatic fatty acid partitioning is likely to require the interaction of ACSL1 with other specific proteins, we used an unbiased protein interaction technique, BioID, to discover ACSL1-binding partners in hepatocytes. We targeted ACSL1 either to the ER or to the OMM of Hepa 1-6 cells as a fusion protein with the Escherichia coli biotin ligase, BirA*. Proteomic analysis identified 98 proteins that specifically interacted with ACSL1 at the ER, 55 at the OMM, and 43 common to both subcellular locations. We found subsets of peroxisomal and lipid droplet proteins, tethering proteins, and vesicle proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. Proteins involved in lipid metabolism were also identified, including acyl-CoA-binding proteins and ceramide synthase isoforms 2 and 5. Our results provide fundamental and detailed insights into protein interaction networks that control fatty acid metabolism.


Assuntos
Coenzima A Ligases/fisiologia , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Feminino , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Biol Chem ; 290(24): 15112-20, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918168

RESUMO

Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4(-/-) mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4(-/-) mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4(-/-) mice did not result from increased heat loss, because both cold tolerance and response to a ß3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4(-/-) BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4(-/-) brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of ß-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos/enzimologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/enzimologia , Animais , Gorduras na Dieta/administração & dosagem , Glicerol-3-Fosfato O-Aciltransferase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Termogênese/genética , Triglicerídeos/metabolismo , Aumento de Peso
5.
J Biol Chem ; 290(6): 3519-28, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25512376

RESUMO

Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.


Assuntos
Diglicerídeos/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipase D/genética , Fosfolipase D/metabolismo , Proteína Quinase C/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/metabolismo
6.
FASEB J ; 29(11): 4641-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220174

RESUMO

Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.


Assuntos
Autofagia/efeitos dos fármacos , Coenzima A Ligases/deficiência , Mitocôndrias Cardíacas/metabolismo , Complexos Multiproteicos/metabolismo , Miocárdio/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Complexos Multiproteicos/genética , Miocárdio/patologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , ATPases Translocadoras de Prótons/metabolismo , Serina-Treonina Quinases TOR/genética
7.
J Lipid Res ; 56(8): 1572-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136511

RESUMO

Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1(T-/-)) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1(T-/-) hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1(T-/-) hearts, control and Acsl1(T-/-) mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function.


Assuntos
Cardiolipinas/metabolismo , Coenzima A Ligases/deficiência , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Respiração Celular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ácido Linoleico/farmacologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução/efeitos dos fármacos , Transporte Proteico , Ratos
8.
Biochim Biophys Acta ; 1841(6): 880-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631848

RESUMO

In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice.


Assuntos
Cardiomegalia/enzimologia , Coenzima A Ligases/genética , Insuficiência Cardíaca Diastólica/enzimologia , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/genética , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Coenzima A Ligases/deficiência , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/patologia , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Oxirredução , Tamoxifeno/farmacologia
9.
Annu Rev Nutr ; 34: 1-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24819326

RESUMO

Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.


Assuntos
Acil Coenzima A/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Animais , Membrana Celular/enzimologia , Coenzima A Ligases/genética , Retículo Endoplasmático/enzimologia , Proteínas de Transporte de Ácido Graxo/genética , Regulação da Expressão Gênica , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico
10.
Cardiovasc Diabetol ; 14: 97, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26242235

RESUMO

BACKGROUND: In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARß and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the muscle-specific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2-/- hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination. METHODS: MuRF2-/- mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARß, and PPARγ1-regulated mRNA expression. RESULTS: MuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2-/- hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2-/- hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2's regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states. CONCLUSIONS: Mutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.


Assuntos
Cardiomiopatias/prevenção & controle , Dieta Hiperlipídica , Proteínas Musculares/metabolismo , Miocárdio/enzimologia , Obesidade/etiologia , PPAR gama/metabolismo , Aumento de Peso , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Genótipo , Resistência à Insulina , Masculino , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Obesidade/enzimologia , Obesidade/genética , PPAR gama/genética , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitinação
11.
BMC Endocr Disord ; 15: 36, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215257

RESUMO

BACKGROUND: The pathogenesis of diabetic cardiomyopathy (DCM) involves the enhanced activation of peroxisome proliferator activating receptor (PPAR) transcription factors, including the most prominent isoform in the heart, PPARα. In cancer cells and adipocytes, post-translational modification of PPARs have been identified, including ligand-dependent degradation of PPARs by specific ubiquitin ligases. However, the regulation of PPARs in cardiomyocytes and heart have not previously been identified. We recently identified that muscle ring finger-1 (MuRF1) and MuRF2 differentially inhibit PPAR activities by mono-ubiquitination, leading to the hypothesis that MuRF3 may regulate PPAR activity in vivo to regulate DCM. METHODS: MuRF3-/- mice were challenged with 26 weeks 60% high fat diet to induce insulin resistance and DCM. Conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARß, and PPARγ1 activities were assayed. RESULTS: MuRF3-/- mice exhibited a premature systolic heart failure by 6 weeks high fat diet (vs. 12 weeks in MuRF3+/+). MuRF3-/- mice weighed significantly less than sibling-matched wildtype mice after 26 weeks HFD. These differences may be largely due to resistance to fat accumulation, as MRI analysis revealed MuRF3-/- mice had significantly less fat mass, but not lean body mass. In vitro ubiquitination assays identified MuRF3 mono-ubiquitinated PPARα and PPARγ1, but not PPARß. CONCLUSIONS: These findings suggest that MuRF3 helps stabilize cardiac PPARα and PPARγ1 in vivo to support resistance to the development of DCM. MuRF3 also plays an unexpected role in regulating fat storage despite being found only in striated muscle.


Assuntos
Cardiomiopatias Diabéticas/genética , Dieta Hiperlipídica/efeitos adversos , Insuficiência Cardíaca Sistólica/genética , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Tecido Adiposo , Animais , Composição Corporal , Peso Corporal , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Insuficiência Cardíaca Sistólica/etiologia , Insuficiência Cardíaca Sistólica/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , PPAR beta/metabolismo , Ubiquitinação
12.
Am J Physiol Endocrinol Metab ; 307(3): E305-15, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939733

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser47³) and Akt(Thr³°8). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.


Assuntos
Proteínas de Transporte/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Glicerol-3-Fosfato O-Aciltransferase/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
J Bioenerg Biomembr ; 46(3): 173-87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24733503

RESUMO

MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1's role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1-/- mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. However, total oxygen consumption was decreased [corrected]. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1-/- hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2's regulation of mitochondrial function.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Camundongos , Camundongos Knockout , Proteínas com Motivo Tripartido
14.
Diabetes ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052774

RESUMO

It is not completely clear which organs are responsible for glucagon elimination in humans, and disturbances in the elimination of glucagon could contribute to the hyperglucagonemia observed in chronic liver disease and chronic kidney disease (CKD). Here, we evaluated kinetics and metabolic effects of exogenous glucagon in individuals with stage 4 CKD (n =16), individuals with Child-Pugh A-C cirrhosis (n = 16) and matched control individuals (n = 16), before, during and after a 60-minute glucagon infusion (4 ng/kg/min). Individuals with CKD exhibited a significantly lower mean metabolic clearance rate of glucagon (14.0 [95% CI 12.2;15.7] mL/kg/min) both compared to individuals with cirrhosis (19.7 [18.1;21.3] mL/kg/min, P < 0.001) and to control individuals (20.4 [18.1;22.7] mL/kg/min, P < 0.001). Glucagon half-life was significantly prolonged in the CKD group (7.5 [6.9;8.2] minutes) compared to individuals with cirrhosis (5.7 [5.2;6.3] minutes, P = 0.002) and control individuals (5.7 [5.2;6.3] minutes, P < 0.001). No difference in the effects of exogenous glucagon on plasma glucose, amino acids, or triglycerides was observed between groups. In conclusion, chronic kidney disease, but not liver cirrhosis leads to a significant reduction in glucagon clearance, supporting the kidneys as a primary site for human glucagon elimination.

15.
Diabetes ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976454

RESUMO

Increased plasma levels of glucagon (hyperglucagonaemia) promote diabetes development but is also observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This may reflect hepatic glucagon resistance towards amino acid catabolism. A clinical test for measuring glucagon resistance has not been validated. We evaluated our glucagon sensitivity (GLUSENTIC) test, consisting of two study days: a glucagon injection and measurements of plasma amino acids, and an infusion of mixed amino acids and subsequent calculation of the GLUSENTIC index (primary outcome measure) from measurements of glucagon and amino acids. To distinguish glucagon-dependent from insulin-dependent actions on amino acid metabolism, we also studied patients with type 1 diabetes (T1D). The delta-decline in total amino acids was 49% lower in MASLD following exogenous glucagon (p=0.01), and the calculated GLUSENTIC index was 34% lower in MASLD (p<0.0001), but not T1D (p>0.99). In contrast, glucagon-induced glucose increments were similar in controls and MASLD (p=0.41). The GLUSENTIC test and index may be used to measure glucagon resistance in individuals with obesity and MASLD.

16.
Hepatol Commun ; 6(10): 2765-2780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866568

RESUMO

Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.


Assuntos
Disbiose , Metabolismo dos Lipídeos , Aciltransferases/genética , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares , Coenzima A/metabolismo , Glucose , Humanos , Hiperfagia , Metabolismo dos Lipídeos/genética , Lipídeos , Camundongos , Taurina , Vitaminas
17.
iScience ; 25(11): 105296, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325048

RESUMO

The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism.

18.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33507883

RESUMO

Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified, despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here, we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid-containing (DHA-containing) NAT C22:6 NAT was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, whereas selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high-fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT is a negative feedback mediator that limits excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Hipertrigliceridemia/dietoterapia , Triglicerídeos/metabolismo , Amidoidrolases/deficiência , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Bile/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Humanos , Hipertrigliceridemia/metabolismo , Hipolipemiantes/administração & dosagem , Hipolipemiantes/metabolismo , Absorção Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Taurina/análogos & derivados , Taurina/metabolismo
20.
J Am Heart Assoc ; 7(8)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622588

RESUMO

BACKGROUND: Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs. Cardiac-specific ACSL1 temporal knockout at 2 months results in a shift from FA oxidation toward glycolysis that promotes mTORC1-mediated ventricular hypertrophy. We used unbiased metabolomics and gene expression analyses to examine the early effects of genetic inactivation of fatty acid oxidation on cardiac metabolism, hypertrophy development, and function. METHODS AND RESULTS: Global cardiac transcriptional analysis revealed differential expression of genes involved in cardiac metabolism, fibrosis, and hypertrophy development in Acsl1H-/- hearts 2 weeks after Acsl1 ablation. Comparison of the 2- and 10-week transcriptional responses uncovered 137 genes whose expression was uniquely changed upon knockdown of cardiac ACSL1, including the distinct upregulation of fibrosis genes, a phenomenon not observed after complete ACSL1 knockout. Metabolomic analysis identified metabolites altered in hearts displaying partially reduced ACSL activity, and rapamycin treatment normalized the cardiac metabolomic fingerprint. CONCLUSIONS: Short-term cardiac-specific ACSL1 inactivation resulted in metabolic and transcriptional derangements distinct from those observed upon complete ACSL1 knockout, suggesting heart-specific mTOR (mechanistic target of rapamycin) signaling that occurs during the early stages of substrate switching. The hypertrophy observed with partial Acsl1 ablation occurs in the context of normal cardiac function and is reminiscent of a physiological process, making this a useful model to study the transition from physiological to pathological hypertrophy.


Assuntos
Coenzima A Ligases/genética , Regulação da Expressão Gênica , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , RNA/genética , Animais , Coenzima A Ligases/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia Doppler , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/metabolismo , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA