Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 18(1): 130, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176793

RESUMO

BACKGROUND: The zooplanktonic cladocerans Daphnia, present in a wide range of water bodies, are an important component of freshwater ecosystems. In contrast to their high dispersal capacity through diapausing eggs carried by waterfowl, Daphnia often exhibit strong population genetic differentiation. Here, to test for common patterns in the population genetic structure of a widespread Holarctic species, D. galeata, we genotyped two sets of populations collected from geographically distant areas: across 13 lakes in Eastern China and 14 lakes in Central Europe. The majority of these populations were genotyped at two types of markers: a mitochondrial gene (for 12S rRNA) and 15 nuclear microsatellite loci. RESULTS: Mitochondrial DNA demonstrated relatively shallow divergence within D. galeata, with distinct haplotype compositions in the two study regions but one widely distributed haplotype shared between several of the Chinese as well as European populations. At microsatellite markers, clear separation was observed at both large (between China and Europe) and small (within Europe) geographical scales, as demonstrated by Factorial Correspondence Analyses, Bayesian assignment and a clustering method based on genetic distances. Genetic diversity was comparable between the sets of Chinese and European D. galeata populations for both types of markers. Interestingly, we observed a significant association between genetic distance and geographical distance for D. galeata populations in China but not in Europe. CONCLUSIONS: Our results indicate relatively recent spread of D. galeata across wide expanses of the Palaearctic, with one mtDNA lineage of D. galeata successfully establishing over large distances. Despite a clear differentiation of Chinese and European D. galeata at a nuclear level, the pattern of genetic variation is nevertheless similar between both regions. Overall, our findings provide insights into the genetic population structure of a cladoceran species with extremely wide geographical range.


Assuntos
Núcleo Celular/genética , Daphnia/genética , Variação Genética , Haplótipos/genética , Mitocôndrias/genética , Alelos , Animais , Teorema de Bayes , China , DNA/genética , DNA Mitocondrial/genética , Europa (Continente) , Genes Mitocondriais , Genética Populacional , Geografia , Repetições de Microssatélites/genética , Filogenia , Zooplâncton/genética
2.
BMC Evol Biol ; 14: 80, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725969

RESUMO

BACKGROUND: In natural communities of cyclical parthenogens, rapid response to environmental change is enabled by switching between two reproduction modes. While long periods of asexual reproduction allow some clones to outcompete others, and may result in "clonal erosion", sexual reproduction restores genetic variation in such systems. Moreover, sexual reproduction may result in the formation of interspecific hybrids. These hybrids can then reach high abundances, through asexual clonal reproduction. In the present study, we explored genetic variation in water fleas of the genus Daphnia. The focus was on the short-term dynamics within several clonal assemblages from the hybridizing Daphnia longispina complex and the impact of gene flow at small spatial scales. RESULTS: Daphnia individuals belonged either to the parental species D. galeata and D. longispina, or to different hybrid classes, as identified by 15 microsatellite markers. The distribution and genotypic structure of parental species, but not hybrids, corresponded well with the geographical positions of the lakes. Within parental species, the genetic distance among populations of D. galeata was lower than among populations of D. longispina. Moreover, D. galeata dominance was associated with higher phosphorous load. Finally, there was no evidence for clonal erosion. CONCLUSIONS: Our results suggest that the contemporary structure of hybridizing Daphnia communities from ten nearby lakes is influenced by colonization events from neighbouring habitats as well as by environmental factors. Unlike the parental species, however, there was little evidence for successful dispersal of hybrids, which seem to be produced locally. Finally, in contrast to temporary Daphnia populations, in which a decrease in clonal diversity was sometimes detectable over a single growing season, the high clonal diversity and lack of clonal erosion observed here might result from repeated hatching of sexually produced offspring. Overall, our study provides insights into spatio-temporal dynamics in a hybridizing Daphnia species complex in a recently established lake system, and relates genetic similarities of populations to a scenario of secondary invasion enhanced by environmental factors.


Assuntos
Daphnia/classificação , Daphnia/genética , Lagos , Animais , Daphnia/fisiologia , Ecossistema , Fluxo Gênico , Hibridização Genética , Repetições de Microssatélites , Partenogênese , Reprodução , Estações do Ano
3.
PLoS One ; 13(7): e0200802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024954

RESUMO

Interspecific hybridization (i.e. mating between species) occurs frequently in animals. Among cyclical parthenogens, hybrids can proliferate and establish through parthenogenetic reproduction, even if their sexual reproduction is impaired. In water fleas of the Daphnia longispina species complex, interspecific hybrids hatch from sexually produced dormant eggs. However, fewer hybrid genotypes contribute to the dormant egg bank and their hatching rate from dormant eggs is reduced, compared to eggs resulting from intraspecific crosses. Therefore, Daphnia hybrids would benefit from adaptations that increase their survival over winter as parthenogenetic lineages, avoiding the need to re-establish populations after winter from sexually produced dormant eggs. Here, we constructed a mathematical model to examine the conditions that could explain the frequently observed establishment of hybrids in the D. longispina species complex. Specifically, we compared the outcome of hybrid and parental taxa competition given a reduced contribution of hybrids to hatchlings from the sexually produced dormant egg bank, but their increased ability to survive winter as parthenogenetic lineages. In addition, different growth rates of parental species and differences in average annual temperatures were evaluated for their influence on hybrid production and establishment. Our model shows that increased overwinter performance as parthenogenetic females can compensate for reduced success in sexual reproduction, across all tested scenarios for varying relative growth rates of parental species. This pattern holds true for lower annual temperatures, but at higher temperatures hybrids were less successful. Consequently, hybrids might become less abundant as temperatures rise due to climate change, resulting in reduced diversity and faster differentiation of the parental species.


Assuntos
Daphnia/genética , Modelos Teóricos , Animais , Variação Genética/genética , Genótipo , Hibridização Genética , Características de História de Vida , Repetições de Microssatélites/genética
4.
Aquat Toxicol ; 182: 31-38, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27846396

RESUMO

Increases in dissolved organic carbon (DOC) in the form of humic substances, causing browning of surface water, have been reported worldwide. Field surveys indicate that higher DOC levels can influence primary production and thus plankton composition. Experimental studies on the direct effects of humic DOC on aquatic organisms have shown varying results depending on concentration and additional environmental factors. Moreover, changes in life-histories and stress responses have usually been tested separately, rather than in combination. We experimentally tested the impact of a sudden increase in humic DOC on two species of the zooplankton cladoceran Daphnia, across several levels of biological organisation, from cellular to population responses. In D. magna, strong impacts on reproduction (delayed maturity and reduced number of offspring) were coupled with overall stress induction (increases in antioxidant capacity and oxidative damage, combined with a reduced amount of available energy). In D. longispina, increased mortality and lowered fecundity were observed. We conclude that a strong input of humic DOC into aquatic systems can have severe negative impacts on zooplankton species, and has the potential to alter zooplankton community structures.


Assuntos
Carbono/toxicidade , Daphnia/efeitos dos fármacos , Substâncias Húmicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Carbono/química , Fertilidade/efeitos dos fármacos , Água Doce/química , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos
5.
PLoS One ; 10(10): e0140275, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448651

RESUMO

Hybridization within the animal kingdom has long been underestimated. Hybrids have often been considered less fit than their parental species. In the present study, we observed that the Daphnia community of a small lake was dominated by a single D. galeata × D. longispina hybrid clone, during two consecutive years. Notably, in artificial community set-ups consisting of several clones representing parental species and other hybrids, this hybrid clone took over within about ten generations. Neither the fitness assay conducted under different temperatures, or under crowded and non-crowded environments, nor the carrying capacity test revealed any outstanding life history parameters of this hybrid clone. However, under simulated winter conditions (i.e. low temperature, food and light), the hybrid clone eventually showed a higher survival probability and higher fecundity compared to parental species. Hybrid superiority in cold-adapted traits leading to an advantage of overwintering as parthenogenetic lineages might consequently explain the establishment of successful hybrids in natural communities of the D. longispina complex. In extreme cases, like the one reported here, a superior hybrid genotype might be the only clone alive after cold winters. Overall, superiority traits, such as enhanced overwintering here, might explain hybrid dominance in nature, especially in extreme and rapidly changing environments. Although any favoured gene complex in cyclic parthenogens could be frozen in successful clones independent of hybridization, we did not find similarly successful clones among parental species. We conclude that the emergence of the observed trait is linked to the production of novel recombined hybrid genotypes.


Assuntos
Daphnia/fisiologia , Animais , Temperatura Baixa , Aglomeração , Feminino , Fertilidade , Hibridização Genética , Masculino , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA