Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Respir Crit Care Med ; 207(10): 1310-1323, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378814

RESUMO

Rationale: The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. Objectives: To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (PaO2/FiO2 ⩽ 200). Methods: Fifteen patients underwent 1-hour phases (constant FiO2) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm H2O, pressure support = 12 cm H2O), and CPAP (PEEP = 14 cm H2O) in randomized sequence. Measurements and Main Results: Inspiratory esophageal (ΔPES) and transpulmonary pressure (ΔPL) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔPES was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm H2O vs. 13 [10-19] cm H2O vs. 10 [8-13] cm H2O; P = 0.001 and P = 0.01). ΔPL was not statistically different between treatments. PaO2/FiO2 ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149]; P = 0.002 and P = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%], P = 0.02; 93% [95% CI, 30-155%], P = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%], P = 0.001; 263% [95% CI, 121-407%], P = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Conclusions: Compared with HFNO, helmet NIV, but not CPAP, reduced ΔPES. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔPL. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).


Assuntos
Ventilação não Invasiva , Insuficiência Respiratória , Humanos , Pressão Positiva Contínua nas Vias Aéreas , Insuficiência Respiratória/terapia , Pulmão , Ventilação não Invasiva/métodos , Hipóxia/terapia
2.
Br J Anaesth ; 131(4): 775-785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543437

RESUMO

BACKGROUND: We aimed at determining whether a 2-h session of high-flow nasal oxygen (HFNO) immediately after extubation improves oxygen exchange after major gynaecological surgery in the Trendelenburg position in adult female patients. METHODS: In this single-centre, open-label, randomised trial, patients who underwent major gynaecological surgery were randomised to HFNO or conventional oxygen treatment with a Venturi mask. The primary outcome was the Pao2/FiO2 ratio after 2 h of treatment. Secondary outcomes included lung ultrasound score, diaphragm thickening fraction, dyspnoea, ventilatory frequency, Paco2, the percentage of patients with impaired gas exchange (Pao2/FiO2 ≤40 kPa) after 2 h of treatment, and postoperative pulmonary complications at 30 days. RESULTS: A total of 83 patients were included (42 in the HFNO group and 41 in the conventional treatment group). After 2 h of treatment, median (inter-quartile range) Pao2/FiO2 was 52.9 (47.9-65.2) kPa in the HFNO group and 45.7 (36.4 -55.9) kPa in the conventional treatment group (mean difference 8.7 kPa [95% CI: 3.4 to 13.9], P=0.003). The lung ultrasound score was lower in the HFNO group than in the conventional treatment group (9 [6-10] vs 12 [10-14], P<0.001), mostly because of the difference of the score in dorsal areas (7 [6-8] vs 10 [9-10], P<0.001). The percentage of patients with impaired gas exchange was lower in the HFNO group than in the conventional treatment group (5% vs 37%, P<0.001). All other secondary outcomes were not different between groups. CONCLUSIONS: In patients who underwent major gynaecological surgery, a pre-emptive 2-h session of HFNO after extubation improved postoperative oxygen exchange and reduced atelectasis compared with a conventional oxygen treatment strategy. CLINICAL TRIAL REGISTRATION: NCT04566419.


Assuntos
Oxigênio , Atelectasia Pulmonar , Adulto , Humanos , Feminino , Oxigênio/uso terapêutico , Pulmão , Respiração Artificial , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/tratamento farmacológico , Procedimentos Cirúrgicos em Ginecologia , Oxigenoterapia
3.
Am J Respir Crit Care Med ; 201(2): 178-187, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577153

RESUMO

Rationale: Response to positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome depends on recruitability. We propose a bedside approach to estimate recruitability accounting for the presence of complete airway closure.Objectives: To validate a single-breath method for measuring recruited volume and test whether it differentiates patients with different responses to PEEP.Methods: Patients with acute respiratory distress syndrome were ventilated at 15 and 5 cm H2O of PEEP. Multiple pressure-volume curves were compared with a single-breath technique. Abruptly releasing PEEP (from 15 to 5 cm H2O) increases expired volume: the difference between this volume and the volume predicted by compliance at low PEEP (or above airway opening pressure) estimated the recruited volume by PEEP. This recruited volume divided by the effective pressure change gave the compliance of the recruited lung; the ratio of this compliance to the compliance at low PEEP gave the recruitment-to-inflation ratio. Response to PEEP was compared between high and low recruiters based on this ratio.Measurements and Main Results: Forty-five patients were enrolled. Four patients had airway closure higher than high PEEP, and thus recruitment could not be assessed. In others, recruited volume measured by the experimental and the reference methods were strongly correlated (R2 = 0.798; P < 0.0001) with small bias (-21 ml). The recruitment-to-inflation ratio (median, 0.5; range, 0-2.0) correlated with both oxygenation at low PEEP and the oxygenation response; at PEEP 15, high recruiters had better oxygenation (P = 0.004), whereas low recruiters experienced lower systolic arterial pressure (P = 0.008).Conclusions: A single-breath method quantifies recruited volume. The recruitment-to-inflation ratio might help to characterize lung recruitability at the bedside.Clinical trial registered with www.clinicaltrials.gov (NCT02457741).


Assuntos
Medidas de Volume Pulmonar , Testes Imediatos , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Idoso , Pressão Sanguínea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Estudos Prospectivos , Troca Gasosa Pulmonar , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/terapia , Resultado do Tratamento
4.
Curr Opin Crit Care ; 26(1): 59-65, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31815775

RESUMO

PURPOSE OF REVIEW: The potential risks of spontaneous effort and their prevention during mechanical ventilation is an important concept for clinicians and patients. The effort-dependent lung injury has been termed 'patient self-inflicted lung injury (P-SILI)' in 2017. As one of the potential strategies to render spontaneous effort less injurious in severe acute respiratory distress syndrome (ARDS), the role of positive end-expiratory pressure (PEEP) is now discussed. RECENT FINDINGS: Experimental and clinical data indicate that vigorous spontaneous effort may worsen lung injury, whereas, at the same time, the intensity of spontaneous effort seems difficult to control when lung injury is severe. Experimental studies found that higher PEEP strategy can be effective to reduce lung injury from spontaneous effort while maintaining some muscle activity. The recent clinical trial to reevaluate systemic early neuromuscular blockade in moderate-severe ARDS (i.e., reevaluation of systemic early neuromuscular blockade (ROSE) trial) support that a higher PEEP strategy can facilitate 'safe' spontaneous breathing under the light sedation targets (i.e., no increase in barotrauma nor 90 days mortality versus early muscle paralysis). SUMMARY: To prevent P-SILI in ARDS, it seems feasible to facilitate 'safe' spontaneous breathing in patients using a higher PEEP strategy in severe ARDS.


Assuntos
Lesão Pulmonar , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Respiração com Pressão Positiva , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia
6.
Am J Respir Crit Care Med ; 199(6): 728-737, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30257100

RESUMO

RATIONALE: End-tidal CO2 (EtCO2) is used to monitor cardiopulmonary resuscitation (CPR), but it can be affected by intrathoracic airway closure. Chest compressions induce oscillations in expired CO2, and this could reflect variable degrees of airway patency. OBJECTIVES: To understand the impact of airway closure during CPR, and the relationship between the capnogram shape, airway closure, and delivered ventilation. METHODS: This study had three parts: 1) a clinical study analyzing capnograms after intubation in patients with out-of-hospital cardiac arrest receiving continuous chest compressions, 2) a bench model, and 3) experiments with human cadavers. For 2 and 3, a constant CO2 flow was added in the lung to simulate CO2 production. Capnograms similar to clinical recordings were obtained and different ventilator settings tested. EtCO2 was compared with alveolar CO2 (bench). An airway opening index was used to quantify chest compression-induced expired CO2 oscillations in all three clinical and experimental settings. MEASUREMENTS AND MAIN RESULTS: A total of 89 patients were analyzed (mean age, 69 ± 15 yr; 23% female; 12% of hospital admission survival): capnograms exhibited various degrees of oscillations, quantified by the opening index. CO2 value varied considerably across oscillations related to consecutive chest compressions. In bench and cadavers, similar capnograms were reproduced with different degrees of airway closure. Differences in airway patency were associated with huge changes in delivered ventilation. The opening index and delivered ventilation increased with positive end-expiratory pressure, without affecting intrathoracic pressure. Maximal EtCO2 recorded between ventilator breaths reflected alveolar CO2 (bench). CONCLUSIONS: During chest compressions, intrathoracic airway patency greatly affects the delivered ventilation. The expired CO2 signal can reflect CPR effectiveness but is also dependent on airway patency. The maximal EtCO2 recorded between consecutive ventilator breaths best reflects alveolar CO2.


Assuntos
Obstrução das Vias Respiratórias/fisiopatologia , Dióxido de Carbono/metabolismo , Reanimação Cardiopulmonar , Expiração/fisiologia , Parada Cardíaca Extra-Hospitalar/terapia , Respiração Artificial , Transdução de Sinais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Curr Opin Crit Care ; 25(1): 37-44, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531537

RESUMO

PURPOSE OF REVIEW: In the setting of cardiopulmonary resuscitation (CPR), classical physiological concept about ventilation become challenging. Ventilation may exert detrimental hemodynamic effects that must be balanced with its expected benefits. The risks of hyperventilation have been thoroughly addressed, even questioning the need for ventilation, emphasizing the need to prioritize chest compression quality. However, ventilation is mandatory for adequate gas exchange as soon as CPR is prolonged. Factors affecting the capability of chest compressions to produce alveolar ventilation are poorly understood. In this review, we discuss the conventional interpretation of interactions between ventilation and circulation, from the perspective of novel physiological observations. RECENT FINDINGS: Many patients with cardiac arrest exhibit 'intrathoracic airway closure.' This phenomenon is associated with lung volume reduction, impedes chest compressions to generate ventilation and overall limits the delivered ventilation. This phenomenon can be reversed by the application of small levels of positive end-expiratory pressure. Also, a novel interpretation of the capnogram can rate the magnitude of this phenomenon, contributing to clarify the physiological meaning of exhaled CO2 and may help assess the real amount of delivered ventilation. SUMMARY: Recent advances in the understanding of ventilatory physiology during CPR shows that capnogram analysis not only provides information on the quality of resuscitation but also on the amount of ventilation produced by chest compressions and on the total amount of ventilation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Respiração Artificial , Humanos , Respiração com Pressão Positiva , Respiração
9.
Am J Respir Crit Care Med ; 208(9): 1002-1004, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586080
10.
Curr Opin Crit Care ; 23(1): 38-44, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27875410

RESUMO

PURPOSE OF REVIEW: Ventilator-induced lung injury (VILI) can occur despite use of tidal volume (VT) limited to 6 ml/kg of predicted body weight, especially in patients with a smaller aerated compartment (i.e. the baby lung) in which, indeed, tidal ventilation takes place. Because respiratory system static compliance (CRS) is mostly affected by the volume of the baby lung, the ratio VT/CRS (i.e. the driving pressure, ΔP) may potentially help tailoring interventions on VT setting. RECENT FINDINGS: Driving pressure is the ventilatory variable most strongly associated with changes in survival and has been shown to be the key mediator of the effects of mechanical ventilation on outcome in the acute respiratory distress syndrome. Observational data suggest an increased risk of death for patients with ΔP more than 14 cmH2O, but a well tolerated threshold for this parameter has yet to be identified. Prone position along with simple ventilatory adjustments to facilitate CO2 clearance may help reduce ΔP in isocapnic conditions. The safety and feasibility of low-flow extracorporeal CO2 removal in enhancing further reduction in VT and ΔP are currently being investigated. SUMMARY: Driving pressure is a bedside available parameter that may help identify patients prone to develop VILI and at increased risk of death. No study had prospectively evaluated whether interventions on ΔP may provide a relevant clinical benefit, but it appears physiologically sound to try titrating VT to minimize ΔP, especially when it is higher than 14 cmH2O and when it has minimal costs in terms of CO2 clearance.


Assuntos
Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Humanos , Pulmão/fisiologia , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/fisiopatologia
15.
Ann Intensive Care ; 14(1): 106, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963617

RESUMO

BACKGROUND: The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS: Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS: Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS: In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.

16.
Minerva Anestesiol ; 90(7-8): 694-706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021144

RESUMO

In acute respiratory distress syndrome, the role of positive end-expiratory pressure (PEEP) to prevent ventilator-induced lung injury is controversial. Randomized trials comparing higher versus lower PEEP strategies failed to demonstrate a clinical benefit. This may depend on the inter-individually variable potential for lung recruitment (i.e. recruitability), which would warrant PEEP individualization to balance alveolar recruitment and the unavoidable baby lung overinflation produced by high pressure. Many techniques have been used to assess recruitability, including lung imaging, multiple pressure-volume curves and lung volume measurement. The Recruitment-to-Inflation ratio (R/I) has been recently proposed to bedside assess recruitability without additional equipment. R/I assessment is a simplified technique based on the multiple pressure-volume curve concept: it is measured by monitoring respiratory mechanics and exhaled tidal volume during a 10-cmH2O one-breath derecruitment maneuver after a short high-PEEP test. R/I scales recruited volume to respiratory system compliance, and normalizes recruitment to a proxy of actual lung size. With modest R/I (<0.3-0.4), setting low PEEP (5-8 cmH2O) may be advisable; with R/I>0.6-0.7, high PEEP (≥15 cmH2O) can be considered, provided that airway and/or transpulmonary plateau pressure do not exceed safety limits. In case of intermediate R/I (≈0.5), a more granular assessment of recruitability may be needed. This could be accomplished with advanced monitoring tools, like sequential lung volume measurement with granular R/I assessment or electrical impedance tomography monitoring during a decremental PEEP trial. In this review, we discuss R/I rationale, applications and limits, providing insights on its clinical use for PEEP selection in moderate-to-severe acute respiratory distress syndrome.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Respiração com Pressão Positiva/métodos , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
17.
J Clin Anesth ; 98: 111569, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39106592

RESUMO

STUDY OBJECTIVE: During laparoscopic surgery, the role of PEEP to improve outcome is controversial. Mechanistically, PEEP benefits depend on the extent of alveolar recruitment, which prevents ventilator-induced lung injury by reducing lung dynamic strain. The hypotheses of this study were that pneumoperitoneum-induced aeration loss and PEEP-induced recruitment are inter-individually variable, and that the recruitment-to-inflation ratio (R/I) can identify patients who benefit from PEEP in terms of strain reduction. DESIGN: Sequential study. SETTING: Operating room. PATIENTS: Seventeen ASA I-III patients receiving robot-assisted prostatectomy during Trendelenburg pneumoperitoneum. INTERVENTIONS AND MEASUREMENTS: Patients underwent end-expiratory lung volume (EELV) and respiratory/lung/chest wall mechanics (esophageal manometry and inspiratory/expiratory occlusions) assessment at PEEP = 0 cmH2O before and after pneumoperitoneum, at PEEP = 4 and 12 cmH2O during pneumoperitoneum. Pneumoperitoneum-induced derecruitment and PEEP-induced recruitment were assessed through a simplified method based on multiple pressure-volume curve. Dynamic and static strain changes were evaluated. R/I between 12 and 4 cmH2O was assessed from EELV. Inter-individual variability was rated with the ratio of standard deviation to mean (CoV). MAIN RESULTS: Pneumoperitoneum reduced EELV by (median [IqR]) 410 mL [80-770] (p < 0.001) and increased dynamic strain by 0.04 [0.01-0.07] (p < 0.001), with high inter-individual variability (CoV = 70% and 88%, respectively). Compared to PEEP = 4 cmH2O, PEEP = 12 cmH2O yielded variable amount of recruitment (139 mL [96-366] CoV = 101%), causing different extent of dynamic strain reduction (median decrease 0.02 [0.01-0.04], p = 0.002; CoV = 86%) and static strain increases (median increase 0.05 [0.04-0.07], p = 0.01, CoV = 33%). R/I (1.73 [0.58-3.35]) estimated the decrease in dynamic strain (p ≤0.001, r = -0.90) and the increase in static strain (p = 0.009, r = -0.73) induced by PEEP, while PEEP-induced changes in respiratory and lung mechanics did not. CONCLUSIONS: Trendelenburg pneumoperitoneum yields variable derecruitment: PEEP capability to revert these phenomena varies significantly among individuals. High R/I identifies patients in whom higher PEEP mostly reduces dynamic strain with limited static strain increases, potentially allowing individualized settings.


Assuntos
Laparoscopia , Pneumoperitônio Artificial , Respiração com Pressão Positiva , Prostatectomia , Procedimentos Cirúrgicos Robóticos , Humanos , Respiração com Pressão Positiva/métodos , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pneumoperitônio Artificial/métodos , Pneumoperitônio Artificial/efeitos adversos , Prostatectomia/efeitos adversos , Prostatectomia/métodos , Idoso , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Decúbito Inclinado com Rebaixamento da Cabeça , Mecânica Respiratória/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Medidas de Volume Pulmonar/métodos , Pulmão/fisiopatologia , Manometria/métodos
18.
Expert Rev Respir Med ; 17(1): 27-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36710082

RESUMO

INTRODUCTION: Non-invasive ventilation (NIV) represents an effective strategy for managing acute respiratory failure. Facemask NIV is strongly recommended in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with hypercapnia and acute cardiogenic pulmonary edema (ACPE). Its role in managing acute hypoxemic respiratory failure (AHRF) remains a debated issue. NIV and continuous positive airway pressure (CPAP) delivered through the helmet are recently receiving growing interest for AHRF management. AREAS COVERED: In this narrative review, we discuss the clinical applications of helmet support compared to the other available noninvasive strategies in the different phenotypes of acute respiratory failure. EXPERT OPINION: Helmets enable the use of high positive end-expiratory pressure, which may protect from self-inflicted lung injury: in AHRF, the possible superiority of helmet support over other noninvasive strategies in terms of clinical outcome has been hypothesized in a network metanalysis and a randomized trial, but has not been confirmed by other investigations and warrants confirmation. In AECOPD patients, helmet efficacy may be inferior to that of face masks, and its use prompts caution due to the risk of CO2 rebreathing. Helmet support can be safely applied in hypoxemic patients with ACPE, with no advantages over facemasks.


Assuntos
Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Edema Pulmonar , Insuficiência Respiratória , Humanos , Dispositivos de Proteção da Cabeça/efeitos adversos , Respiração com Pressão Positiva , Ventilação não Invasiva/efeitos adversos , Insuficiência Respiratória/terapia , Doença Pulmonar Obstrutiva Crônica/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
J Crit Care ; 75: 154259, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36706553

RESUMO

PURPOSE: To assess the accuracy of differential time to positivity (DTP) method for the diagnosis of catheter-related bloodstream infections (CRBSI) in the routine practice of our intensive care unit (ICU). MATERIALS AND METHODS: Over a five-year study period, ICU patients with a central venous catheter in place for ≥48 h and undergoing DTP test with catheter tip culture were analyzed. We investigated: the accuracy of DTP test with the usual threshold of 120 min in confirming the clinical suspicion of CRBSI; the most accurate threshold value of DTP to detect CRBSI; the diagnostic accuracy of the ratio (rather than the difference) between times to positivity. RESULTS: Among 278 episodes of paired blood cultures, 13% were CRBSIs. DTP value ≥120 min used for the diagnosis of CRBSI yielded 41% sensitivity and 74% specificity. Performance of DTP values in predicting CRBSI was low (AUC = 0.60 [95%CI: 0.48-0.72]). Cutoff value of the ratio between times to positivity was 0.80, with 46% sensitivity and 79% specificity. CONCLUSIONS: The routine use of the DTP method at any cutoff point has inadequate accuracy in detecting CRBSI in the real every day clinical practice. Not even the ratio between times to positivity seems to be clinically useful.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Cateterismo Venoso Central , Cateteres Venosos Centrais , Humanos , Bacteriemia/diagnóstico , Hemocultura , Infecções Relacionadas a Cateter/diagnóstico , Cateterismo Venoso Central/efeitos adversos , Fatores de Tempo , Unidades de Terapia Intensiva , Cateteres Venosos Centrais/efeitos adversos , Análise de Dados
20.
Diagnostics (Basel) ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359561

RESUMO

Vitamin D covers roles of paramount importance in the regulation of multiple physiological pathways of the organism. The metabolism of vitamin D involves kidney-liver crosstalk and requires an adequate function of these organs, where vitamin D is progressively turned into active forms. Vitamin D deficiency has been widely reported in patients living in the community, being prevalent among the most vulnerable subjects. It has been also documented in many critically ill patients upon admission to the intensive care unit. In this context, vitamin D deficiency may represent a risk factor for the development of life-threatening clinical conditions (e.g., infection and sepsis) and worse clinical outcomes. Several researchers have investigated the impact of vitamin D supplementation showing its feasibility, safety, and effectiveness, although conflicting results have put into question its real benefit in critically ill patients. The existing studies included heterogeneous critically ill populations and used slightly different protocols of vitamin D supplementation. For these reasons, pooling up the results is difficult and not conclusive. In this narrative review, we described vitamin D physiology and the pathophysiology of vitamin D depletion with a specific focus on critically ill patients with liver dysfunction, acute kidney injury, acute respiratory failure, and sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA