Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530641

RESUMO

Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.


Assuntos
Odorantes/análise , Saccharomycetales/fisiologia , Vinho/microbiologia , Fermentação , Hanseniaspora/fisiologia , Metschnikowia/fisiologia , Pichia/fisiologia , Torulaspora/fisiologia , Compostos Orgânicos Voláteis/química , Vinho/análise
2.
Food Microbiol ; 84: 103262, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421756

RESUMO

The organoleptic attributes of Prunus mahaleb, a fruit representing a new source of bioactive compounds, are so pronounced that it can be consider non-edible. This study was designed to evaluate the acceptance of P. mahaleb fruits after fermentation with different Saccharomyces cerevisiae and Lactobacillus plantarum protechnological strains. Four different bacterial and one yeast strains, as single or mixed starter formulation, were used to inoculate an aqueous suspension of P. mahaleb fruits. The fermented fruits and fermentation broths were subjected to physico-chemical characterization and the organoleptic properties of both samples were also assessed by a hedonic panel. The obtained results indicated that all the employed strains were able to grow and to ferment the matrix. However, the mixed starter FG69 + Li180-7 (L. plantarum/S. cerevisiae) had the best impact on sensory characteristics of P. mahaleb fruit and fermented medium. The adopted protocol allowed us to attain edible fruits and a new fermented non-dairy drink with valuable probiotic health-promoting properties. In our knowledge, this is the first study concerning the exploitation of P. mahaleb fruits. This investigation confirmed the potential of yeasts and lactic acid bacteria co-inoculation in the design of starter tailored for this kind of food applications.


Assuntos
Fermentação , Frutas/microbiologia , Lactobacillus plantarum/metabolismo , Prunus/microbiologia , Saccharomyces cerevisiae/metabolismo , Microbiologia de Alimentos , Malatos/análise , Probióticos
3.
Appl Microbiol Biotechnol ; 102(2): 569-576, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29189899

RESUMO

Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the "Bretta" character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF and MLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.


Assuntos
Agentes de Controle Biológico , Brettanomyces/crescimento & desenvolvimento , Fermentação , Microbiologia de Alimentos , Vinho/microbiologia , Álcoois/metabolismo , Ácidos Cumáricos/metabolismo , Contaminação de Alimentos/prevenção & controle , Lactobacillales/metabolismo , Malatos/metabolismo , Fenóis/análise , Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia
4.
Food Microbiol ; 57: 187-94, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052718

RESUMO

Malolactic fermentation (MLF) is a secondary fermentation in wine that usually takes place during or at the end of alcoholic fermentation. Lactobacillus plantarum is able to conduct MLF (particularly under high pH conditions and in co-inoculation with yeasts), and some strains are commercially used as MLF starter cultures. Recent evidences suggest a further use of selected L. plantarum strains for the pre-alcoholic acidification of grape must. In this study, we have carried out an integrated (molecular, technological, and biotechnological) characterization of L. plantarum strains isolated from Apulian wines in order to combine the two protechnological features (MLF performances and must acidification aptitudes). Several parameters such as sugar, pH and ethanol tolerance, resistance to lyophilisation and behaviour in grape must were evaluated. Moreover, the expression of stress gene markers was investigated and was linked to the ability of L. plantarum strains to grow and perform MLF. Co-inoculation of Saccharomyces cerevisiae and L. plantarum in grape must improves the bacterial adaptation to harsh conditions of wine and reduced total fermentation time. For the first time, we applied a polyphasic approach for the characterization of L. plantarum in reason of the MLF performances. The proposed procedure can be generalized as a standard method for the selection of bacterial resources for the design of MLF starter cultures tailored for high pH must.


Assuntos
Microbiologia Industrial/métodos , Lactobacillus plantarum/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Fermentação , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/isolamento & purificação , Malatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vitis/metabolismo , Vinho/análise
5.
Food Microbiol ; 59: 196-204, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27375260

RESUMO

The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC state). Furthermore, one representative strain was selected and RNA-seq analysis performed after exposure to 1.2 mg/L SO2 and during the recovery phase. 30 and 1634 genes were identified as differentially expressed following VBNC entrance and 'resuscitation', respectively. The results reported strongly suggested that the entrance in the SO2-induced VBNC state in B. bruxellensis is associated with both, sulfite toxicity and oxidative stress response, confirming the crucial role of genes/proteins involved in redox cell homeostasis. Among the genes induced during recovery, the expression of genes involved in carbohydrate metabolism and encoding heat shock proteins, as well as enriched categories including amino acid transport and transporter activity was observed. The evidences of a general repression of genes involved in DNA replication suggest the occurrence of a true resuscitation of cell rather than a simple regrowth.


Assuntos
Brettanomyces/genética , Brettanomyces/fisiologia , Microbiologia de Alimentos , Viabilidade Microbiana , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Contagem de Colônia Microbiana/métodos , Meios de Cultura , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Homeostase , Oxirredução , Estresse Oxidativo/genética , Fenóis/metabolismo , Sulfitos , Dióxido de Enxofre/farmacologia , Vinho/análise
6.
World J Microbiol Biotechnol ; 32(4): 59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925621

RESUMO

The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called "Uva di Troia", monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS-5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of 'cultivable' microbiota diversity of "Uva di Troia" cultivar from the grape to the corresponding wine ("Nero di Troia"), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations.


Assuntos
Sucos de Frutas e Vegetais/microbiologia , Vitis/microbiologia , Leveduras/classificação , Leveduras/isolamento & purificação , Biodiversidade , DNA Fúngico/genética , DNA Ribossômico/genética , Fermentação , Itália , Técnicas de Tipagem Micológica , Filogeografia , RNA Ribossômico 5,8S/genética , Vitis/química , Vinho/análise
7.
Food Microbiol ; 46: 368-382, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475307

RESUMO

Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. Conservolea and Kalamàta are the most important table olives Greek varieties. In the Greek system, the final product is obtained by spontaneous fermentations, without any chemical debittering treatment. This natural fermentation process is not predictable and strongly influenced by the physical-chemical conditions and by the presence of microorganisms contaminating the olives. Natural fermentations of Conservolea and Kalamàta cultivars black olives were studied in order to determine microbiological, biochemical and chemical evolution during the process. Following the process conditions generally used by producers, in both cultivars, yeasts were detected throughout the fermentation, whereas lactic acid bacteria (LAB) appeared in the last staged of the process. A new optimized specific protocol was developed to select autochthonous yeast and LAB isolates that can be good candidates as starters. These microorganisms were pre-selected for their ability to adapt to model brines, to have beta-glucosidase activity, not to produce biogenic amines. Chemical compounds deriving by microbiological activities and associated to the three different phases (30, 90 and 180 days) of the fermentation process were identified and were proposed as chemical descriptors to follow the fermentation progress.


Assuntos
Bactérias/isolamento & purificação , Microbiologia de Alimentos/métodos , Olea/microbiologia , Leveduras/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Fermentação , Olea/química , Leveduras/genética , Leveduras/metabolismo
8.
Plant Foods Hum Nutr ; 70(4): 454-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26547323

RESUMO

Grape berries polyphenols are mainly synthesized in the skin tissues and seeds and they are extracted during the winemaking process. These substances have a potentially positive effect, on human health, thus giving to grape and red wine "functional properties" that can contribute to prevent a number of human illness. Nevertheless, the research community is showing that the real effect is a result of a combination of different factors, notably daily intake, bioavailability, or in vivo antioxidant activity that are yet to be resolved. Viticulture and winemaking practices, determine the concentration of polyphenols in grape and wine. To date, reduced knowledge is existing on the effects of different yeast strains on the final concentration of polyphenols in red wine. We summarize the recent findings concerning the effects of polyphenols on human chronic disease and the future directions for research to increase the amount of these compounds in wine.


Assuntos
Frutas/química , Polifenóis/análise , Vitis/química , Vinho/análise , Anti-Infecciosos , Antioxidantes , Disponibilidade Biológica , Doença Crônica/prevenção & controle , Dieta , Suplementos Nutricionais , Fermentação , Flavonoides/análise , Frutas/metabolismo , Humanos , Oxirredução , Fenóis/análise , Polifenóis/farmacocinética , Polifenóis/uso terapêutico
9.
Food Chem ; 453: 139702, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772309

RESUMO

This research explored the impact of binary cereal blends [barley with durum wheat (DW) and soft wheat (CW)], four autochthonous yeast strains (9502, 9518, 14061 and 17290) and two refermentation sugar concentrations (6-9 g/L), on volatolomics (VOCs) and odour profiles of craft beers using unsupervised statistics. For the first time, we applied permutation test to select volatiles with higher significance in explaining variance among samples. The unsupervised approach on the 19 selected VOCs revealed cereal-yeast interaction to be the main source of variability and DW-9502-6/9, DW-17290-6, CW-17290-6 and CW-9518-6 being the best technological strategies. In particular, in samples DW-9502-6/9, concentrations of some of the selected volatiles were observed to be approximately three to more than seven times higher than the average. PLS-correlation between VOCs and odour profiles proved to be very useful in assessing the weight of each of the selected VOCs on the perception of odour notes.


Assuntos
Cerveja , Odorantes , Compostos Orgânicos Voláteis , Cerveja/análise , Odorantes/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Análise Multivariada , Triticum/química , Triticum/genética , Hordeum/química , Hordeum/genética , Hordeum/microbiologia , Humanos , Fermentação
10.
Foods ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254613

RESUMO

Grape variety, quality, geographic origins and phytopathology can influence the amount of polyphenols that accumulate in grape tissues. Polyphenols in wine not only shape their organoleptic characteristics but also significantly contribute to the positive impact that this beverage has on human health. However, during the winemaking process, the total polyphenol content is substantially reduced due to the adsorption onto yeast wall polymers and subsequent lees separation. Despite this, limited information is available regarding the influence of the yeast starter strain on the polyphenolic profile of wine. To address this issue, a population consisting of 136 Saccharomyces cerevisiae strains was analyzed to identify those with a diminished ability to adsorb polyphenols. Firstly, the reduction in concentration of polyphenolic compounds associated to each strain was studied by assaying Total Phenolic Content (TPC) and Trolox Equivalent Antioxidant Capacity (TEAC) in the wines produced by micro-scale must fermentation. A total of 29 strains exhibiting a TPC and TEAC reduction ≤ 50%, when compared to that detected in the utilized grape must were identified and the nine most-promising strains were further validated by larger-scale vinification. Physico-chemical analyses of the resulting wines led to the identification of four strains, namely ITEM6920, ITEM9500, ITEM9507 and ITEM9508 which showed, compared to the control wine, a TPC and TEAC reduction ≤ 20 in the produced wines. They were denoted by a significant (p < 0.05) increased amount of anthocyanin, quercetin and trans-coutaric acid, minimal volatile acidity (<0.2 g/L), absence of undesirable metabolites and a well-balanced volatile profile. As far as we know, this investigation represents the first clonal selection of yeast strains aimed at the identifying "functional" fermentation starters, thereby enabling the production of regional wines with enriched polyphenolic content.

11.
Food Microbiol ; 36(2): 335-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010615

RESUMO

This work is the first large-scale study on vineyard-associated yeast strains from Apulia (Southern Italy). Yeasts were identified by Internal Transcribed Spacer (ITS) ribotyping and bioinformatic analysis. The polymorphism of interdelta elements was used to differentiate Saccharomyces cerevisiae strains. Twenty different species belonging to 9 genera were identified. Predominant on the grape surface were Metschnikowia pulcherrima, Hanseniaspora uvarum and Aureobasidium pullulans, whereas M. pulcherrima and H. uvarum were dominant in the early fermentation stage. A total of 692 S. cerevisiae isolates were identified and a number of S. cerevisiae strains, ranging from 26 to 55, was detected in each of the eight fermentations. The strains were tested for biogenic amines (BAs) production, either in synthetic media or grape must. Two Pichia manshurica, an Issatchenkia terricola and a M. pulcherrima strains were able to produce histamine and cadaverine, during must fermentation. The production of BAs in wine must was different than that observed in the synthetic medium. This feature indicate the importance of an "in grape must" assessment of BAs producing yeast. Overall, our results suggest the importance of microbiological control during wine-making to reduce the potential health risk for consumer represented by these spoilage yeasts.


Assuntos
Biodiversidade , Aminas Biogênicas/biossíntese , Vitis/microbiologia , Vinho/microbiologia , Leveduras/isolamento & purificação , Leveduras/metabolismo , Aminas Biogênicas/toxicidade , Meios de Cultura/metabolismo , Fermentação , Inocuidade dos Alimentos , Itália , Vitis/metabolismo , Leveduras/classificação , Leveduras/genética
12.
Food Microbiol ; 35(1): 10-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23628608

RESUMO

The development of fast, reliable and culture-independent molecular tools to detect bacteria producing biogenic amines deserves the attention of research and ultimately of the food industry in order to protect consumers' health. Here we present the application of a simple, low-cost, fast and sensitive method to perform microdroplet-based multiplex PCR, directly on a food matrix, for the simultaneous detection of bacterial genes involved in biogenic amine biosynthesis. After inoculating wine with Lactobacillus brevis IOEB 9809, cell lysis and DNA amplification are performed in one single step, without preliminary nucleic acid extraction or purification treatments. The assay is performed in about 30 min, requiring 150 nL of starting sample and it enables the detection of down to 15 bacterial cells. With respect to traditional culture techniques, the speed, the simplicity and the cheapness of this procedure allow an effective monitoring of microbial cells during food-making and processing.


Assuntos
Aminas Biogênicas/biossíntese , Contaminação de Alimentos/análise , Levilactobacillus brevis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Microbiologia de Alimentos , Genes Bacterianos , Levilactobacillus brevis/genética , Técnicas Analíticas Microfluídicas/métodos , Vinho/microbiologia
13.
Food Chem ; 416: 135783, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871508

RESUMO

This study investigated the impact of changes in craft beer formulation, by modifying the unmalted cereal [(durum (Da) and soft (Ri) wheat), emmer (Em)], hops [Cascade (Ca) and Columbus (Co)], and yeast strains [M21 (Wi) - M02 (Ci)], on volatolomic, acidic, and olfactory profiles. Olfactory attributes were evaluated by the trained panel. Volatolomic and acidic profiles were determined by GC-MS. The sensory analysis detected significant differences for 5 attributes, including olfactory intensity and finesse, malty, herbaceous, and floral notes. Multivariate analysis of volatiles data, showed significant differences among the samples (p < 0.05). DaCaWi, DaCoWi, and RiCoCi beers differ from the others by their higher concentrations of esters, alcohols, and terpenes. A PLSC analysis was carried out between volatiles and odour attributes. As far as we know, this is the first investigation that shed light on the impact of 3-factors interaction on the sensory-volatolomic profile of craft beers, through a comprehensive multivariate approach.


Assuntos
Humulus , Saccharomyces cerevisiae , Cerveja/análise , Grão Comestível , Quimiometria
14.
Front Microbiol ; 14: 1234884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577427

RESUMO

This study investigated the influence of three Saccharomyces cerevisiae strains, selected from different matrices - CHE-3 (cherry), P4 (sourdough) and TA4-10 (grape must) - on characteristics of Italian Grape Ale (IGA) beers obtained at microbrewery scale. A multidisciplinary approach, combining results from analysis of chemical, volatile and organoleptic profiles of the beers, was adopted to underline the relationships between yeast starter and the quality of final products. Detection volatile organic compounds (VOCs) by Gas-Chromatography coupled with Mass Spectrometry (GC-MS) after extraction carried out by head-space micro-extraction (HS-SPME) revealed that the beer obtained by P4 strain differed from the others for its higher concentrations of esters, alcohols, and terpenes as confirmed by PCA (principal component analysis) and Cluster heatmap. Furthermore, sensorial analysis and consumer test showed that this sample differed from others by more pronounced notes of "fruity smell and floral" and "olfactory finesse," and it was the most appreciated beer for smell, taste, and overall quality. Conversely, CHE-3 was the sample with the lowest concentrations of the identified volatiles and, together TA4-10, showed the highest scores for smoked, yeast, malt, and hop notes. As far as we know, these are the first results on the application of indigenous S. cerevisiae strains in the production of craft IGA beers analyzed through a complex multivariate approach.

15.
Biochim Biophys Acta ; 1808(3): 733-44, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21167129

RESUMO

High-level expression of the GUP1 gene in Saccharomyces cerevisiae resulted in the formation of proliferated structures, which hosted endoplasmic reticulum (ER), Golgi and itinerant proteins. The GUP1 over-expression enhanced ER biogenesis, as shown by the coordinated increased transcription rate of genes involved in both ER and Golgi metabolism and in phospholipids biosynthesis. The formation of Gup1-induced proliferation revealed that it depended on an intact unfolded protein response, because their assembly was reported to be lethal to yeast strains unable to initiate the UPR (Unfolded Protein Response) pathway. GUP1 over-expression affected global ER and Golgi structure and resulted in the biogenesis of novel membrane arrays with Golgi and ER hybrid composition. In fact, a number of ER and Golgi resident proteins together with itinerant proteins that normally cycle between ER and Golgi, were localized in the proliferated stacked membranes. The described assembling of novel membrane structures was affected by the functionality of the Gup1 O-acyltransferase domain, which regulates the Gup1 protein role as remodelase in the glycosylphosphatidylinositol (GPI) anchored proteins biosynthesis. To our knowledge, we presented the first evidence of sub cellular modifications in response over-expression of a GPI-anchor remodelase in S. cerevisiae.


Assuntos
Aciltransferases/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aciltransferases/genética , Glicosilfosfatidilinositóis , Imunoprecipitação , Proteínas de Membrana Transportadoras/genética , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
16.
J Ind Microbiol Biotechnol ; 39(1): 81-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21691795

RESUMO

The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H(2)S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture.


Assuntos
Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho , Ácido Acético/metabolismo , Sulfeto de Hidrogênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/isolamento & purificação , Vitis/microbiologia , Vinho/análise
17.
J Ind Microbiol Biotechnol ; 39(12): 1875-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22996308

RESUMO

It has been demonstrated that Agaricus bisporus tyrosinase is able to oxidize various phenolic compounds, thus being an enzyme of great importance for a number of biotechnological applications. The tyrosinase-coding PPO2 gene was isolated by reverse-transcription polymerase chain reaction (RT-PCR) using total RNA extracted from the mushroom fruit bodies as template. The gene was sequenced and cloned into pYES2 plasmid, and the resulting pY-PPO2 recombinant vector was then used to transform Saccharomyces cerevisiae cells. Native polyacrylamide gel electrophoresis followed by enzymatic activity staining with L-3,4-dihydroxyphenylalanine (L-DOPA) indicated that the recombinant tyrosinase is biologically active. The recombinant enzyme was overexpressed and biochemically characterized, showing that the catalytic constants of the recombinant tyrosinase were higher than those obtained when a commercial tyrosinase was used, for all the tested substrates. The present study describes the recombinant production of A. bisporus tyrosinase in active form. The produced enzyme has similar properties to the one produced in the native A. bisporus host, and its expression in S. cerevisiae provides good potential for protein engineering and functional studies of this important enzyme.


Assuntos
Agaricus/enzimologia , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agaricus/genética , Sequência de Bases , Biocatálise , Western Blotting , Eletroforese em Gel de Poliacrilamida , Cinética , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/citologia , Especificidade por Substrato
18.
Foods ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406997

RESUMO

This review takes a snapshot of the main multivariate statistical techniques and methods used to process data on the concentrations of wine volatile molecules extracted by means of solid phase micro-extraction and analyzed using GC-MS. Hypothesis test, exploratory analysis, regression models, and unsupervised and supervised pattern recognition methods are illustrated and discussed. Several applications in the wine volatolomic sector are described to highlight different interactions among the various matrix components and volatiles. In addition, the use of Artificial Intelligence-based methods is discussed as an innovative class of methods for validating wine varietal authenticity and geographical traceability.

19.
Front Microbiol ; 13: 830277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359728

RESUMO

This paper reports on a common experiment performed by 17 Research Units of the Italian Group of Microbiology of Vine and Wine (GMVV), which belongs to the Scientific Society SIMTREA, with the aim to validate a protocol for the characterization of wine strains of Saccharomyces cerevisiae. For this purpose, two commercial S. cerevisiae strains (EC 1118 and AWRI796) were used to carry out inter-laboratory-scale comparative fermentations using both synthetic medium and grape musts and applying the same protocol to obtain reproducible, replicable, and statistically valid results. Ethanol yield, production of acetic acid, glycerol, higher alcohols, and other volatile compounds were assessed. Moreover, the Fourier transform infrared spectroscopy was also applied to define the metabolomic fingerprint of yeast cells from each experimental trial. Data were standardized as unit of compounds or yield per gram of sugar (glucose and fructose) consumed throughout fermentation, and analyzed through parametric and non-parametric tests, and multivariate approaches (cluster analysis, two-way joining, and principal component analysis). The results of experiments carried out by using synthetic must showed that it was possible to gain comparable results from three different laboratories by using the same strains. Then, the use of the standardized protocol on different grape musts allowed pointing out the goodness and the reproducibility of the method; it showed the main traits of the two yeast strains and allowed reducing variability amongst independent batches (biological replicates) to acceptable levels. In conclusion, the findings of this collaborative study contributed to the validation of a protocol in a specific synthetic medium and in grape must and showed how data should be treated to gain reproducible and robust results, which could allow direct comparison of the experimental data obtained during the characterization of wine yeasts carried out by different research laboratories.

20.
Antonie Van Leeuwenhoek ; 99(2): 189-200, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20571862

RESUMO

The apiculate yeasts are the species predominating the first stage of grape must alcoholic fermentation and are important for the production of desired volatile compounds. The aim of the present investigation was to establish a protocol for the enological selection of non-Saccharomyces strains directly isolated from a natural must fermentation during the tumultuous phase. At this scope, fifty Hanseniaspora uvarum isolates were characterized at strain level by employing a new combined PCR-based approach. One isolate representative of each identified strain was used in fermentation assays to assess strain-specific enological properties. The chemical analysis indicated that all the analyzed strains were low producers of acetic acid and hydrogen sulphide, whereas they showed fructophilic character and high glycerol production. Analysis of volatile compounds indicated that one strain could positively affect, during the alcoholic fermentation process, the taste and flavour of alcoholic beverages. The statistical evaluation of obtained results indicated that the selected autochthonous H. uvarum strain possessed physiological and technological properties which satisfy the criteria indicated for non-Saccharomyces wine yeasts selection. Our data suggest that the described protocol could be advantageously applied for the selection of non-Saccharomyces strains suitable for the formulation of mixed or sequential starters together with Saccharomyces cerevisiae.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Hanseniaspora/isolamento & purificação , Hanseniaspora/metabolismo , Vinho/microbiologia , Ácido Acético/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Glicerol/metabolismo , Hanseniaspora/química , Hanseniaspora/genética , Sulfeto de Hidrogênio/metabolismo , Reação em Cadeia da Polimerase , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA