Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 51(3): 1319-1329, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37140254

RESUMO

Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.


Assuntos
Ferro , Mycobacterium tuberculosis , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Nucleic Acids Res ; 49(17): 10120-10135, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34417623

RESUMO

The iron-dependent regulator IdeR is the main transcriptional regulator controlling iron homeostasis genes in Actinobacteria, including species from the Corynebacterium, Mycobacterium and Streptomyces genera, as well as the erythromycin-producing bacterium Saccharopolyspora erythraea. Despite being a well-studied transcription factor since the identification of the Diphtheria toxin repressor DtxR three decades ago, the details of how IdeR proteins recognize their highly conserved 19-bp DNA target remain to be elucidated. IdeR makes few direct contacts with DNA bases in its target sequence, and we show here that these contacts are not required for target recognition. The results of our structural and mutational studies support a model wherein IdeR mainly uses an indirect readout mechanism, identifying its targets via the sequence-dependent DNA backbone structure rather than through specific contacts with the DNA bases. Furthermore, we show that IdeR efficiently recognizes a shorter palindromic sequence corresponding to a half binding site as compared to the full 19-bp target previously reported, expanding the number of potential target genes controlled by IdeR proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium/genética , DNA Bacteriano/metabolismo , Mycobacterium/genética , Proteínas Repressoras/metabolismo , Saccharopolyspora/genética , Streptomyces/genética , Proteínas de Bactérias/genética , Sequência de Bases/genética , Sítios de Ligação/genética , Corynebacterium/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Ferro/química , Família Multigênica/genética , Mycobacterium/metabolismo , Proteínas Repressoras/genética , Saccharopolyspora/metabolismo , Transdução de Sinais/genética , Streptomyces/metabolismo , Transcrição Gênica/genética
3.
J Biol Chem ; 294(48): 18372-18386, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31591267

RESUMO

A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (µ-oxo/µ-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (µ-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a µ-oxo/µ-hydroxo-bridged MnIII/FeIII dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Oxirredutases/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Geobacillus/enzimologia , Geobacillus/genética , Ferro/química , Ligantes , Manganês/química , Modelos Moleculares , Estrutura Molecular , Mutação , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxigênio/química , Oxigênio/metabolismo , Domínios Proteicos , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética
4.
J Am Chem Soc ; 142(11): 5338-5354, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32062969

RESUMO

Heterobimetallic Mn/Fe proteins represent a new cofactor paradigm in bioinorganic chemistry and pose countless outstanding questions. The assembly of the active site defies common chemical convention by contradicting the Irving-Williams series, while the scope of reactivity remains unexplored. In this work, the assembly and C-H bond activation process in the Mn/Fe R2-like ligand-binding oxidase (R2lox) protein is investigated using a suite of biophysical techniques, including time-resolved optical spectroscopy, global kinetic modeling, X-ray crystallography, electron paramagnetic resonance spectroscopy, protein electrochemistry, and mass spectrometry. Selective metal binding is found to be under thermodynamic control, with the binding sites within the apo-protein exhibiting greater MnII affinity than FeII affinity. The comprehensive analysis of structure and reactivity of wild-type R2lox and targeted primary and secondary sphere mutants indicate that the efficiency of C-H bond activation directly correlates with the Mn/Fe cofactor reduction potentials and is inversely related to divalent metal binding affinity. These findings suggest the R2lox active site is precisely tuned for achieving both selective heterobimetallic binding and high levels of reactivity and offer a mechanism to examine the means by which proteins achieve appropriate metal incorporation.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Metaloproteínas/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Ferro/química , Manganês/química , Metaloproteínas/química , Metaloproteínas/genética , Mutação , Oxirredutases/química , Oxirredutases/genética , Oxigênio/química , Ligação Proteica , Termodinâmica
5.
J Biol Inorg Chem ; 25(4): 571-582, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296998

RESUMO

Correct protein metallation in the complex mixture of the cell is a prerequisite for metalloprotein function. While some metals, such as Cu, are commonly chaperoned, specificity towards metals earlier in the Irving-Williams series is achieved through other means, the determinants of which are poorly understood. The dimetal carboxylate family of proteins provides an intriguing example, as different proteins, while sharing a common fold and the same 4-carboxylate 2-histidine coordination sphere, are known to require either a Fe/Fe, Mn/Fe or Mn/Mn cofactor for function. We previously showed that the R2lox proteins from this family spontaneously assemble the heterodinuclear Mn/Fe cofactor. Here we show that the class Ib ribonucleotide reductase R2 protein from Bacillus anthracis spontaneously assembles a Mn/Mn cofactor in vitro, under both aerobic and anoxic conditions, when the metal-free protein is subjected to incubation with MnII and FeII in equal concentrations. This observation provides an example of a protein scaffold intrinsically predisposed to defy the Irving-Williams series and supports the assumption that the Mn/Mn cofactor is the biologically relevant cofactor in vivo. Substitution of a second coordination sphere residue changes the spontaneous metallation of the protein to predominantly form a heterodinuclear Mn/Fe cofactor under aerobic conditions and a Mn/Mn metal center under anoxic conditions. Together, the results describe the intrinsic metal specificity of class Ib RNR and provide insight into control mechanisms for protein metallation.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Ferro/química , Manganês/química , Modelos Moleculares , Conformação Proteica , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética
6.
J Biol Inorg Chem ; 24(2): 211-221, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30689052

RESUMO

R2-like ligand-binding oxidases (R2lox) assemble a heterodinuclear Mn/Fe cofactor which performs reductive dioxygen (O2) activation, catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold, and binds a fatty acid in a putative substrate channel. We have previously shown that the N-terminal metal binding site 1 is unspecific for manganese or iron in the absence of O2, but prefers manganese in the presence of O2, whereas the C-terminal site 2 is specific for iron. Here, we analyze the effects of amino acid exchanges in the cofactor environment on cofactor assembly and metalation specificity using X-ray crystallography, X-ray absorption spectroscopy, and metal quantification. We find that exchange of either the cross-linking tyrosine or the valine, regardless of whether the mutation still allows cross-link formation or not, results in unspecific manganese or iron binding at site 1 both in the absence or presence of O2, while site 2 still prefers iron as in the wild-type. In contrast, a mutation that blocks binding of the fatty acid does not affect the metal specificity of either site under anoxic or aerobic conditions, and cross-link formation is still observed. All variants assemble a dinuclear trivalent metal cofactor in the aerobic resting state, independently of cross-link formation. These findings imply that the cross-link residues are required to achieve the preference for manganese in site 1 in the presence of O2. The metalation specificity, therefore, appears to be established during the redox reactions leading to cross-link formation.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Ribonucleotídeo Redutases/metabolismo , Tirosina/metabolismo , Valina/metabolismo , Reagentes de Ligações Cruzadas/química , Geobacillus/enzimologia , Ferro/química , Manganês/química , Mutação Puntual , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Tirosina/química , Valina/química
7.
J Biol Inorg Chem ; 24(6): 849-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410573

RESUMO

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.


Assuntos
Bacillus anthracis/enzimologia , Bacillus anthracis/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Metaloproteases/metabolismo , Cristalografia por Raios X , FMN Redutase/química , FMN Redutase/genética , FMN Redutase/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Metaloproteases/química , Metaloproteases/genética , Ribonucleotídeo Redutases
8.
J Am Chem Soc ; 140(4): 1471-1480, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29268610

RESUMO

The heterobimetallic R2lox protein binds both manganese and iron ions in a site-selective fashion and activates oxygen, ultimately performing C-H bond oxidation to generate a tyrosine-valine cross-link near the active site. In this work, we demonstrate that, following assembly, R2lox undergoes photoinduced changes to the active site geometry and metal coordination motif. Through spectroscopic, structural, and mass spectrometric characterization, the photoconverted species is found to consist of a tyrosinate-bound iron center following light-induced decarboxylation of a coordinating glutamate residue and cleavage of the tyrosine-valine cross-link. This process occurs with high quantum efficiencies (Φ = 3%) using violet and near-ultraviolet light, suggesting that the photodecarboxylation is initiated via ligand-to-metal charge transfer excitation. Site-directed mutagenesis and structural analysis suggest that the cross-linked tyrosine-162 is the coordinating residue. One primary product is observed following irradiation, indicating potential use of this class of proteins, which contains a putative substrate channel, for controlled photoinduced decarboxylation processes, with relevance for in vivo functionality of R2lox as well as application in environmental remediation.


Assuntos
Geobacillus/enzimologia , Ferro/química , Luz , Manganês/química , Oxirredutases/química , Ferro/metabolismo , Manganês/metabolismo , Oxirredução , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Processos Fotoquímicos , Conformação Proteica
9.
J Biol Inorg Chem ; 23(6): 879-886, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29946980

RESUMO

R2-like ligand-binding oxidases contain a dinuclear metal cofactor which can consist either of two iron ions or one manganese and one iron ion, but the heterodinuclear Mn/Fe cofactor is the preferred assembly in the presence of MnII and FeII in vitro. We have previously shown that both types of cofactor are capable of catalyzing formation of a tyrosine-valine ether cross-link in the protein scaffold. Here we demonstrate that Mn/Fe centers catalyze cross-link formation more efficiently than Fe/Fe centers, indicating that the heterodinuclear cofactor is the biologically relevant one. We further explore the chemical potential of the Mn/Fe cofactor by introducing mutations at the cross-linking valine residue. We find that cross-link formation is possible also to the tertiary beta-carbon in an isoleucine, but not to the secondary beta-carbon or tertiary gamma-carbon in a leucine, nor to the primary beta-carbon of an alanine. These results illustrate that the reactivity of the cofactor is highly specific and directed.


Assuntos
Oxirredutases/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Carbono/metabolismo , Catálise , Cristalização , Ferro/metabolismo , Ligantes , Manganês/metabolismo , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética
10.
J Biol Chem ; 290(42): 25254-72, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26324712

RESUMO

Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.


Assuntos
Ferro/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Ácidos Graxos/metabolismo , Hidroxilação , Estrutura Molecular , Oxirredução , Espectroscopia por Absorção de Raios X
11.
Inorg Chem ; 55(19): 9869-9885, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27610479

RESUMO

Enzymes with a dimetal-carboxylate cofactor catalyze reactions among the top challenges in chemistry such as methane and dioxygen (O2) activation. Recently described proteins bind a manganese-iron cofactor (MnFe) instead of the classical diiron cofactor (FeFe). Determination of atomic-level differences of homo- versus hetero-bimetallic cofactors is crucial to understand their diverse redox reactions. We studied a ligand-binding oxidase from the bacterium Geobacillus kaustophilus (R2lox) loaded with a FeFe or MnFe cofactor, which catalyzes O2 reduction and an unusual tyrosine-valine ether cross-link formation, as revealed by X-ray crystallography. Advanced X-ray absorption, emission, and vibrational spectroscopy methods and quantum chemical and molecular mechanics calculations provided relative Mn/Fe contents, X-ray photoreduction kinetics, metal-ligand bond lengths, metal-metal distances, metal oxidation states, spin configurations, valence-level degeneracy, molecular orbital composition, nuclear quadrupole splitting energies, and vibrational normal modes for both cofactors. A protonation state with an axial water (H2O) ligand at Mn or Fe in binding site 1 and a metal-bridging hydroxo group (µOH) in a hydrogen-bonded network is assigned. Our comprehensive picture of the molecular, electronic, and dynamic properties of the cofactors highlights reorientation of the unique axis along the Mn-OH2 bond for the Mn1(III) Jahn-Teller ion but along the Fe-µOH bond for the octahedral Fe1(III). This likely corresponds to a more positive redox potential of the Mn(III)Fe(III) cofactor and higher proton affinity of its µOH group. Refined model structures for the Mn(III)Fe(III) and Fe(III)Fe(III) cofactors are presented. Implications of our findings for the site-specific metalation of R2lox and performance of the O2 reduction and cross-link formation reactions are discussed.

12.
Proc Natl Acad Sci U S A ; 110(43): 17189-94, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101498

RESUMO

Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn(II) < Fe(II) < Ni(II) < Co(II) < Cu(II) > Zn(II)). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from Mn(II) and Fe(II) in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds Fe(II) over Mn(II) as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.


Assuntos
Éter/química , Metaloproteínas/química , Metais/química , Multimerização Proteica , Algoritmos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Catálise , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Éter/metabolismo , Geobacillus/enzimologia , Geobacillus/genética , Ferro/química , Ferro/metabolismo , Manganês/química , Manganês/metabolismo , Metaloproteínas/metabolismo , Metais/metabolismo , Modelos Químicos , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
13.
Nature ; 459(7249): 1015-8, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536266

RESUMO

The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/efeitos da radiação , Klebsiella pneumoniae/enzimologia , Luz , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Regulação Alostérica/efeitos da radiação , Biocatálise/efeitos da radiação , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Metais/metabolismo , Modelos Moleculares , Fósforo/metabolismo , Fótons , Fotorreceptores Microbianos/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
14.
J Am Chem Soc ; 136(38): 13399-409, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25153930

RESUMO

The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a µ-hydroxo/bis-µ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the µ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.


Assuntos
Chlamydia trachomatis/enzimologia , Geobacillus/enzimologia , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Ribonucleotídeo Redutases/química , Chlamydia trachomatis/química , Espectroscopia de Ressonância de Spin Eletrônica , Geobacillus/química , Ferro/química , Manganês/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Processos Fotoquímicos , Teoria Quântica
15.
J Biol Inorg Chem ; 19(6): 759-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24771036

RESUMO

The ferritin superfamily contains several protein groups that share a common fold and metal coordinating ligands. The different groups utilize different dinuclear cofactors to perform a diverse set of reactions. Several groups use an oxygen-activating di-iron cluster, while others use di-manganese or heterodinuclear Mn/Fe cofactors. Given the similar primary ligand preferences of Mn and Fe as well as the similarities between the binding sites, the basis for metal specificity in these systems remains enigmatic. Recent data for the heterodinuclear cluster show that the protein scaffold per se is capable of discriminating between Mn and Fe and can assemble the Mn/Fe center in the absence of any potential assembly machineries or metal chaperones. Here we review the current understanding of the assembly of the heterodinuclear cofactor in the two different protein groups in which it has been identified, ribonucleotide reductase R2c proteins and R2-like ligand-binding oxidases. Interestingly, although the two groups form the same metal cluster they appear to employ partly different mechanisms to assemble it. In addition, it seems that both the thermodynamics of metal binding and the kinetics of oxygen activation play a role in achieving metal specificity.


Assuntos
Ferro/metabolismo , Manganês/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Domínio Catalítico , Ferro/química , Manganês/química , Modelos Moleculares
16.
Sci Adv ; 9(26): eadi0963, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379391

RESUMO

Cold-adapted enzymes are characterized both by a higher catalytic activity at low temperatures and by having their temperature optimum down-shifted, compared to mesophilic orthologs. In several cases, the optimum does not coincide with the onset of protein melting but reflects some other type of inactivation. In the psychrophilic α-amylase from an Antarctic bacterium, the inactivation is thought to originate from a specific enzyme-substrate interaction that breaks around room temperature. Here, we report a computational redesign of this enzyme aimed at shifting its temperature optimum upward. A set of mutations designed to stabilize the enzyme-substrate interaction were predicted by computer simulations of the catalytic reaction at different temperatures. The predictions were verified by kinetic experiments and crystal structures of the redesigned α-amylase, showing that the temperature optimum is indeed markedly shifted upward and that the critical surface loop controlling the temperature dependence approaches the target conformation observed in a mesophilic ortholog.


Assuntos
Temperatura Baixa , Proteínas , Temperatura , Conformação Molecular , alfa-Amilases/química , alfa-Amilases/metabolismo
17.
Nucleic Acids Res ; 38(10): 3454-65, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20139420

RESUMO

Structural Maintenance of Chromosomes (SMC) proteins are vital for a wide range of processes including chromosome structure and dynamics, gene regulation and DNA repair. Eukaryotes have three SMC complexes, consisting of heterodimeric pairs of six different SMC proteins along with several specific regulatory subunits. In addition to their other functions, all three SMC complexes play distinct roles in DNA repair. Cohesin (SMC1-SMC3) is involved in DNA double-strand break repair, condensin (SMC2-SMC4) participates in single-strand break (SSB) repair, and the SMC5-SMC6 complex functions in various DNA repair pathways. SMC proteins consist of N- and C-terminal domains that fold back onto each other to create an ATPase 'head' domain, connected to a central 'hinge' domain via long coiled-coils. The hinge domain mediates dimerization of SMC proteins and binds DNA, but it is not clear to what purpose this activity serves. We studied the structure and function of the condensin hinge domain from mouse. While the SMC hinge domain structure is largely conserved from prokaryotes to eukaryotes, its function seems to have diversified throughout the course of evolution. The condensin hinge domain preferentially binds single-stranded DNA. We propose that this activity plays a role in the SSB repair function of the condensin complex.


Assuntos
Adenosina Trifosfatases/química , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Adenosina Trifosfatases/isolamento & purificação , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Cristalização , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Dimerização , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/isolamento & purificação , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
FEBS Lett ; 596(12): 1600-1610, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35175627

RESUMO

R2-like ligand-binding oxidase (R2lox) is a ferritin-like protein that harbours a heterodinuclear manganese-iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine-valine ether cross-link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry-based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.


Assuntos
Manganês , Oxirredutases , Domínio Catalítico , Ferro/metabolismo , Ligantes , Manganês/metabolismo , Oxirredutases/metabolismo
19.
Proteins ; 79(2): 558-68, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21117236

RESUMO

Structural Maintenance of Chromosomes (SMC) proteins are essential for a wide range of processes including chromosome structure and dynamics, gene regulation, and DNA repair. While bacteria and archaea have one SMC protein that forms a homodimer, eukaryotes possess three distinct SMC complexes, consisting of heterodimeric pairs of six different SMC proteins. SMC holocomplexes additionally contain several specific regulatory subunits. The bacterial SMC complex is required for chromosome condensation and segregation. In eukaryotes, this function is carried out by the condensin (SMC2-SMC4) complex. SMC proteins consist of N-terminal and C-terminal domains that fold back onto each other to create an ATPase "head" domain, connected to a central "hinge" domain via a long coiled-coil region. The hinge domain mediates dimerization of SMC proteins and binds DNA. This activity implicates a direct involvement of the hinge domain in the action of SMC proteins on DNA. We studied the SMC hinge domain from the thermophilic archaeon Pyrococcus furiosus. Its crystal structure shows that the SMC hinge domain fold is largely conserved between archaea and bacteria as well as eukarya. Like the eukaryotic condensin hinge domain, the P. furiosus SMC hinge domain preferentially binds single-stranded DNA (ssDNA), but its affinity for DNA is weaker than that of its eukaryotic counterpart, and point mutations reveal that its DNA-binding surface is more confined. The ssDNA-binding activity of its hinge domain might play a role in the DNA-loading process of the prokaryotic SMC complex during replication.


Assuntos
Proteínas Cromossômicas não Histona/química , Pyrococcus furiosus , Proteínas Recombinantes/química , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Propriedades de Superfície , Difração de Raios X
20.
Acta Crystallogr D Struct Biol ; 75(Pt 8): 764-771, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373575

RESUMO

Here, a method is described which exploits X-ray anomalous dispersion (XAD) to quantify mixtures of metal ions in the binding sites of proteins and can be applied to metalloprotein crystals of average quality. This method has successfully been used to study site-specific metal binding in a protein from the R2-like ligand-binding oxidase family which assembles a heterodinuclear Mn/Fe cofactor. While previously only the relative contents of Fe and Mn in each metal-binding site have been assessed, here it is shown that the method can be extended to quantify the relative occupancies of at least three different transition metals, enabling complex competition experiments. The number of different metal ions that can be quantified is only limited by the number of high-quality anomalous data sets that can be obtained from one crystal, as one data set has to be collected for each transition-metal ion that is present (or is suspected to be present) in the protein, ideally at the absorption edge of each metal. A detailed description of the method, Q-XAD, is provided.


Assuntos
Cátions/química , Cristalografia por Raios X/métodos , Metais/química , Oxirredutases/química , Sítios de Ligação , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA