Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 203(4): 490-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489779

RESUMO

AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.


Assuntos
Aves , Plumas , Animais , Feminino , Aves/fisiologia , Reprodução , Olfato , Mamíferos
2.
Mol Ecol ; 32(12): 3044-3059, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36919652

RESUMO

Individuals vary in their immune genotype, inbreeding coefficient f, immune responses, survival to adulthood, and adult longevity. However, whether immune genes predict survival or longevity, whether such relationships are mediated through immune responses, and how f affects immune genotype remain unclear. We use a wild song sparrow (Melospiza melodia) population in which survival to adulthood, adult longevity, and f were measured precisely, and in which immune responses have previously been assessed. We investigate four toll-like receptor (TLR) and the major histocompatibility complex (MHC) class IIB exon 2 genes. We test whether immune genes predict fitness (survival to adulthood or adult longevity); whether immune genes predict immune response; whether immune response predicts fitness and whether fitness, immune responses, or immune genotypes are correlated with f. We find that survival to adulthood is not associated with immune gene variation, but adult longevity is decreased by high MHC allele diversity (especially in birds that were relatively outbred), and by the presence of a specific MHC supertype. Immune responses were affected by specific immune genotypes. Survival to adulthood and adult longevity were not predicted by immune response, implying caution in the use of immune response as a predictor for fitness. We also found no relationship between f and immune genotype. This finding indicates that immune gene associations with longevity and immune response are not artefacts of f, and suggests that pathogen-mediated selection at functional loci can slow the loss of genetic variation arising from genetic drift and small population size.


Assuntos
Variação Genética , Passeriformes , Humanos , Animais , Genótipo , Endogamia , Antígenos de Histocompatibilidade Classe II , Alelos , Imunidade , Seleção Genética
3.
J Anim Ecol ; 90(9): 2202-2212, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34002375

RESUMO

Metabolites produced by symbiotic microbes can affect the odour of their hosts, providing olfactory cues of identity, sex or other salient features. In birds, preen oil is a major source of body odour that differs between populations and sexes. We hypothesized that population and sex differences in preen oil chemistry reflect underlying differences in preen gland microbiota, predicting that these microbes also differ among populations and between the sexes. We further predicted that pairwise similarity in the community composition of preen gland microbiota would covary with that of preen oil chemical composition, consistent with the fermentation hypothesis for chemical recognition. We analysed preen oil chemistry and preen gland bacterial communities of song sparrows Melospiza melodia. Birds were sampled at sites for which population and sex differences in preen oil have been reported, and at a third site that has been less studied. Consistent with prior work in this system, we found population and sex differences in preen oil chemistry. By contrast, we found population differences but not sex differences in the community composition of preen gland microbes. Overall similarity in the community composition of preen gland microbiota did not significantly covary with that of preen oil chemistry. However, we identified a subset of six microbial genera that maximally correlated with preen oil composition. Although both preen gland microbiota and preen oil composition differ across populations, we did not observe an overall association between them that would implicate symbiotic microbes in mediating variation in olfactory cues associated with preen oil. Instead, certain subsets of microbes may be involved in mediating olfactory cues in birds, but experiments are required to test this.


Assuntos
Microbiota , Passeriformes , Aves Canoras , Animais , Plumas , Feminino , Masculino , Glândulas Sebáceas
4.
J Chem Ecol ; 45(1): 37-45, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456558

RESUMO

Chemical signaling has been well studied in invertebrates and mammals but less so in birds, due to the longstanding misconception that olfaction is unimportant or even non-existent in this taxon. However, recent findings suggest that olfaction plays an important role in avian mate choice and reproductive behavior, similar to other taxa. The leading candidate source for compounds involved in avian chemical communication is preen oil, a complex mixture secreted from the uropygial gland. Preen oil contains volatile compounds and their potential wax ester precursors, and may act as a reproductive chemosignal. Reproductive signals are generally sexually dimorphic, age-specific, seasonally variable, and may also vary geographically. We tested whether preen oil meets these expectations by using gas chromatography to examine the wax ester composition of preen oil in song sparrows (Melospiza melodia). We found that the wax ester composition of preen oil was significantly different between sexes, age classes, seasons, and populations. Collectively, our results suggest that song sparrow preen oil meets the criteria of a chemical cue that may influence mate choice and reproduction. Our findings in song sparrows, which are sexually monomorphic in plumage, also parallel patterns described for dark-eyed juncos (Junco hyemalis), a closely related songbird with sexually dimorphic plumage. Behavioral tests are needed to confirm that song sparrows attend to the cues present in preen oil, but our findings support the increasingly accepted idea that chemical communication is common and widespread in birds as it is in other taxa.


Assuntos
Ésteres/análise , Óleos/química , Atrativos Sexuais/análise , Pardais/fisiologia , Ceras/análise , Envelhecimento , Animais , Ésteres/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Óleos/metabolismo , Reprodução , Estações do Ano , Atrativos Sexuais/metabolismo , Caracteres Sexuais , Aves Canoras/fisiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Ceras/metabolismo
5.
Biol Rev Camb Philos Soc ; 97(3): 1193-1209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35128775

RESUMO

Smell is a sensory modality that is rarely considered in birds, but evidence is mounting that olfaction is an important aspect of avian behaviour and ecology. The uropygial gland produces an odoriferous secretion (preen oil) that can differ seasonally and between the sexes. These differences are hypothesized to function in olfactory camouflage, i.e. minimizing detection by nest predators (olfactory crypsis hypothesis), and/or intraspecific olfactory communication, particularly during breeding (sex semiochemical hypothesis). However, evidence for seasonal and sex differences in preen oil is mixed, with some studies finding differences and others not, and direct evidence for the putative function(s) of seasonal variation and sex differences in preen oil remains limited. We conducted a systematic review of the evidence for such changes in preen oil chemical composition, finding seasonal differences in 95% of species (57/60 species in 35 studies) and sex differences in 47% of species (28/59 species in 46 studies). We then conducted phylogenetic comparative analyses using data from 59 bird species to evaluate evidence for both the olfactory crypsis and sex semiochemical hypotheses. Seasonal differences were more likely in the incubating than non-incubating sex in ground-nesting species, but were equally likely regardless of incubation strategy in non-ground-nesting species. This result supports the olfactory crypsis hypothesis, if ground nesters are more vulnerable to olfactorily searching predators than non-ground nesters. Sex differences were more likely in species with uniparental than biparental incubation and during breeding than non-breeding, consistent with both the olfactory crypsis and sex semiochemical hypotheses. At present, the data do not allow us to disentangle these two hypotheses, but we provide recommendations that will enable researchers to do so.


Assuntos
Melhoramento Vegetal , Olfato , Animais , Aves , Comunicação , Feromônios , Filogenia
6.
Evolution ; 75(11): 2736-2746, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34596241

RESUMO

Parasite-mediated selection is widespread at loci involved in immune defense, but different defenses may experience different selective regimes. For defenses involved in clearing infections, purifying selection favoring a single most efficacious allele likely predominates. However, for defenses involved in sensing and recognizing infections, evolutionary arms races may make positive selection particularly important. This could manifest primarily within populations (e.g., balancing selection maintaining variation) or among them (e.g., spatially varying selection enhancing population differences in allele frequencies). We genotyped three toll-like receptors (TLR; involved in sensing infections) and three avian beta-defensins (involved in clearing infections) in 96 song sparrows (Melospiza melodia) from three breeding populations that differ in disease resistance. Variation-based indicators of selection (proportion of variable sites, proportion of nonsynonymous SNPs, proportion of sites bearing signatures of positive or purifying selection, rare allele frequencies) did not differ appreciably between the two locus types. However, differentiation was generally higher at infection-sensing than infection-clearing loci. Allele frequencies differed markedly at TLR3, driven by a variant predicted to alter protein function. Geographically structured variants at infection-sensing loci may reflect local adaptation to spatially heterogeneous parasite communities. Selective regimes experienced by infection-sensing versus infection-clearing loci may differ primarily due to parasite-mediated population differentiation.


Assuntos
Aves Canoras , Animais , Imunidade Inata/genética , Aves Canoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA