Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 1225, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526520

RESUMO

BACKGROUND: Brain tumor vasculature can be significantly compromised and leakier than that of normal brain blood vessels. Little is known if there are vascular permeability alterations in the brain adjacent to tumor (BAT). Changes in BAT permeability may also lead to increased drug permeation in the BAT, which may exert toxicity on cells of the central nervous system. Herein, we studied permeation changes in BAT using quantitative fluorescent microscopy and autoradiography, while the effect of chemotherapy within the BAT region was determined by staining for activated astrocytes. METHODS: Human metastatic breast cancer cells (MDA-MB-231Br) were injected into left ventricle of female NuNu mice. Metastases were allowed to grow for 28 days, after which animals were injected fluorescent tracers Texas Red (625 Da) or Texas Red dextran (3 kDa) or a chemotherapeutic agent 14C-paclitaxel. The accumulation of tracers and 14C-paclitaxel in BAT were determined by using quantitative fluorescent microscopy and autoradiography respectively. The effect of chemotherapy in BAT was determined by staining for activated astrocytes. RESULTS: The mean permeability of texas Red (625 Da) within BAT region increased 1.0 to 2.5-fold when compared to normal brain, whereas, Texas Red dextran (3 kDa) demonstrated mean permeability increase ranging from 1.0 to 1.8-fold compared to normal brain. The Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3 kDa) were found to be 4.32 ± 0.2 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g respectively and found to be significantly higher than the normal brain. We also found that there is significant increase in accumulation of 14C-Paclitaxel in BAT compared to the normal brain. We also observed animals treated with chemotherapy (paclitaxel (10 mg/kg), erubilin (1.5 mg/kg) and docetaxel (10 mg/kg)) showed activated astrocytes in BAT. CONCLUSIONS: Our data showed increased permeation of fluorescent tracers and 14C-paclitaxel in the BAT. This increased permeation lead to elevated levels of activated astrocytes in BAT region in the animals treated with chemotherapy.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Neoplasias da Mama/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Modelos Teóricos , Paclitaxel/farmacologia , Permeabilidade
2.
Oncotarget ; 8(48): 83734-83744, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137378

RESUMO

BACKGROUND: Drug and antibody delivery to brain metastases has been highly debated in the literature. The blood-tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), and has shown to have highly functioning efflux transporters and barrier properties, which limits delivery of targeted therapies. METHODS: We characterized the permeability of 125I-trastuzumab in an in-vivo, and fluorescent trastuzumab-Rhodamine123 (t-Rho123) in a novel microfluidic in-vitro, BBB and BTB brain metastases of breast cancer model. In-vivo: Human MDA-MB-231-HER2+ metastatic breast cancer cells were grown and maintained under static conditions. Cells were harvested at 80% confluency and prepped for intra-cardiac injection into 20 homozygous female Nu/Nu mice. In-vitro: In a microfluidic device (SynVivo), human umbilical vein endothelial cells were grown and maintained under shear stress conditions in the outer compartment and co-cultured with CTX-TNA2 rat brain astrocytes (BBB) or Met-1 metastatic HER2+ murine breast cancer cells (BTB), which were maintained in the central compartment under static conditions. RESULTS: Tissue distribution of 125I-trastuzumab revealed only ~3% of injected dose reached normal brain, with ~5% of injected dose reaching brain tumors. No clear correlation was observed between size of metastases and the amount of 125I-trastuzumab localized in-vivo. This heterogeneity was paralleled in-vitro, where the distribution of t-Rho123 from the outer chamber to the central chamber of the microfluidic device was qualitatively and quantitatively analyzed over time. The rate of t-Rho123 linear uptake in the BBB (0.27 ± 0.33 × 104) and BTB (1.29 ± 0.93 × 104) showed to be significantly greater than 0 (p < 0.05). The BTB devices showed significant heterogenetic tendencies, as seen in in-vivo. CONCLUSIONS: This study is one of the first studies to measure antibody movement across the blood-brain and blood-tumor barriers, and demonstrates that, though in small and most likely not efficacious quantities, trastuzumab does cross the blood-brain and blood-tumor barriers.

3.
Fluids Barriers CNS ; 14(1): 3, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114946

RESUMO

BACKGROUND: The lack of translatable in vitro blood-tumor barrier (BTB) models creates challenges in the development of drugs to treat tumors of the CNS and our understanding of how the vascular changes at the BBB in the presence of a tumor. METHODS: In this study, we characterize a novel microfluidic model of the BTB (and BBB model as a reference) that incorporates flow and induces shear stress on endothelial cells. Cell lines utilized include human umbilical vein endothelial cells co-cultured with CTX-TNA2 rat astrocytes (BBB) or Met-1 metastatic murine breast cancer cells (BTB). Cells were capable of communicating across microfluidic compartments via a porous interface. We characterized the device by comparing permeability of three passive permeability markers and one marker subject to efflux. RESULTS: The permeability of Sulforhodamine 101 was significantly (p < 0.05) higher in the BTB model (13.1 ± 1.3 × 10-3, n = 4) than the BBB model (2.5 ± 0.3 × 10-3, n = 6). Similar permeability increases were observed in the BTB model for molecules ranging from 600 Da to 60 kDa. The function of P-gp was intact in both models and consistent with recent published in vivo data. Specifically, the rate of permeability of Rhodamine 123 across the BBB model (0.6 ± 0.1 × 10-3, n = 4), increased 14-fold in the presence of the P-gp inhibitor verapamil (14.7 ± 7.5 × 10-3, n = 3) and eightfold with the addition of Cyclosporine A (8.8 ± 1.8 × 10-3, n = 3). Similar values were noted in the BTB model. CONCLUSIONS: The dynamic microfluidic in vitro BTB model is a novel commercially available model that incorporates shear stress, and has permeability and efflux properties that are similar to in vivo data.


Assuntos
Permeabilidade Capilar , Microfluídica/métodos , Modelos Cardiovasculares , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Técnicas de Cocultura , Difusão , Células Endoteliais da Veia Umbilical Humana , Humanos , Cinética , Camundongos , Modelos Neurológicos , Ratos
4.
Curr Cancer Drug Targets ; 17(5): 479-485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27903215

RESUMO

BACKGROUND: Brain cancer from metastasized breast cancer has a high mortality rate in women. The treatment of lesions is hampered in large part by the blood-brain barrier (BBB), which prevents adequate distribution of anti-cancer compounds to brain metastases. METHOD: In this study we used a novel screening method to identify candidate molecules that are well-suited to utilizing the BBB choline transporter for distribution into the brain parenchyma. RESULTS: From our screen we identified two compounds, Ch-1 and Ch-2 that were able to reduce the brain tumor burden in a murine mouse model of brain metastasis of breast cancer. These compounds also significantly increased the survival of mice by more than 10 days. Mechanistic studies indicated that Ch-1 is able to prevent the activation of the pro-survival mitogen-activated kinases (MAPKs) by osteoactivin (OA; Glycoprotein nonmetastatic melanoma protein B GPNMB). CONCLUSION: The results from this study show that nutrient transporter virtual screening is a viable novel alternative to traditional drug screening programs to identify anti-cancer compounds for the treatment of brain cancers.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Animais , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA