RESUMO
Structure-activity studies have led to a discovery of 3-(4-pyridyl)methyl ether derivative 9d that has 25- to 50-fold greater functional potency than R-baclofen at human and rodent GABA(B) receptors in vitro. Mouse hypothermia studies confirm that this compound crosses the blood-brain barrier and is approximately 50-fold more potent after systemic administration.
Assuntos
Baclofeno/farmacologia , Descoberta de Drogas , Agonistas GABAérgicos/farmacologia , Receptores de GABA-B/efeitos dos fármacos , Animais , Baclofeno/química , Baclofeno/farmacocinética , Barreira Hematoencefálica , Agonistas GABAérgicos/química , Agonistas GABAérgicos/farmacocinética , Humanos , CamundongosRESUMO
Thyroid hormones require transport across cell membranes to carry out their biological functions. The importance of transport for thyroid hormone signaling was highlighted by the discovery that inactivating mutations in the human monocarboxylate transporter-8 (MCT8) (SLC16A2) cause severe psychomotor retardation due to thyroid hormone deficiency in the central nervous system. It has been reported that Mct8 expression in the mouse brain is restricted to neurons, leading to the model that organic ion transporter polypeptide-14 (OATP14, also known as OATP1C1/SLCO1C1) is the primary thyroid hormone transporter at the blood-brain barrier, whereas MCT8 mediates thyroid hormone uptake into neurons. In contrast to these reports, we report here that in addition to neuronal expression, MCT8 mRNA and protein are expressed in cerebral microvessels in human, mouse, and rat. In addition, OATP14 mRNA and protein are strongly enriched in mouse and rat cerebral microvessels but not in human microvessels. In rat, Mct8 and Oatp14 proteins localize to both the luminal and abluminal microvessel membranes. In human and rodent choroid plexus epithelial cells, MCT8 is concentrated on the epithelial cell apical surface and OATP14 localizes primarily to the basal-lateral surface. Mct8 and Oatp14 expression was also observed in mouse and rat tanycytes, which are thought to form a barrier between hypothalamic blood vessels and brain. These results raise the possibility that reduced thyroid hormone transport across the blood-brain barrier contributes to the neurological deficits observed in affected patients with MCT8 mutations. The high microvessel expression of OATP14 in rodent compared with human brain may contribute to the relatively mild phenotype observed in Mct8-null mice, in contrast to humans lacking functional MCT8.
Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Cérebro/irrigação sanguínea , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Microvasos/citologia , Microvasos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SimportadoresRESUMO
Alcoholism is one of the most prevalent neuropsychiatric diseases, having an enormous health and socioeconomic impact. Along with a few other medications, acamprosate (Campral-calcium-bis (N-acetylhomotaurinate)) is clinically used in many countries for relapse prevention. Although there is accumulated evidence suggesting that acamprosate interferes with the glutamate system, the molecular mode of action still remains undefined. Here we show that acamprosate does not interact with proposed glutamate receptor mechanisms. In particular, acamprosate does not interact with NMDA receptors or metabotropic glutamate receptor group I. In three different preclinical animal models of either excessive alcohol drinking, alcohol-seeking, or relapse-like drinking behavior, we demonstrate that N-acetylhomotaurinate by itself is not an active psychotropic molecule. Hence, the sodium salt of N-acetylhomotaurinate (i) is ineffective in alcohol-preferring rats to reduce operant responding for ethanol, (ii) is ineffective in alcohol-seeking rats in a cue-induced reinstatement paradigm, (iii) and is ineffective in rats with an alcohol deprivation effect. Surprisingly, calcium salts produce acamprosate-like effects in all three animal models. We conclude that calcium is the active moiety of acamprosate. Indeed, when translating these findings to the human situation, we found that patients with high plasma calcium levels due to acamprosate treatment showed better primary efficacy parameters such as time to relapse and cumulative abstinence. We conclude that N-acetylhomotaurinate is a biologically inactive molecule and that the effects of acamprosate described in more than 450 published original investigations and clinical trials and 1.5 million treated patients can possibly be attributed to calcium.
Assuntos
Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Cálcio/metabolismo , Taurina/análogos & derivados , Acamprosato , Dissuasores de Álcool/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , GABAérgicos/farmacologia , Humanos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Prevenção Secundária , Taurina/química , Taurina/farmacologia , Taurina/uso terapêutico , Xenopus laevisRESUMO
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2alpha. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2alpha are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.