Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204968

RESUMO

An endothelial-lined blood vessel model is obtained in a PDMS (Polydimethylsiloxane) microfluidic system, where vascular endothelial cells are grown under physiological shear stress, allowing -like maturation. This experimental model is employed for enhanced drug delivery studies, aimed at characterising the increase in endothelial permeability upon microbubble-enhanced ultrasound-induced (USMB) cavitation. We developed a multi-step protocol to couple the optical and the acoustic set-ups, thanks to a 3D-printed insonation chamber, provided with direct optical access and a support for the US transducer. Cavitation-induced interendothelial gap opening is then analysed using a customised code that quantifies gap area and the relative statistics. We show that exposure to US in presence of microbubbles significantly increases endothelial permeability and that tissue integrity completely recovers within 45 min upon insonation. This protocol, along with the versatility of the microfluidic platform, allows to quantitatively characterise cavitation-induced events for its potential employment in clinics.

2.
Lab Chip ; 21(2): 234-253, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33315027

RESUMO

Immunotherapy is a powerful therapeutic approach able to re-educate the immune system to fight cancer. A key player in this process is the tumor microenvironment (TME), which is a dynamic entity characterized by a complex array of tumor and stromal cells as well as immune cell populations trafficking to the tumor site through the endothelial barrier. Recapitulating these multifaceted dynamics is critical for studying the intimate interactions between cancer and the immune system and to assess the efficacy of emerging immunotherapies, such as immune checkpoint inhibitors (ICIs) and adoptive cell-based products. Microfluidic devices offer a unique technological approach to build tumor-on-a-chip reproducing the multiple layers of complexity of cancer-immune system crosstalk. Here, we seek to review the most important biological and engineering developments of microfluidic platforms for studying cancer-immune system interactions, in both solid and hematological tumors, highlighting the role of the vascular component in immune trafficking. Emphasis is given to image processing and related algorithms for real-time monitoring and quantitative evaluation of the cellular response to microenvironmental dynamic changes. The described approaches represent a valuable tool for preclinical evaluation of immunotherapeutic strategies.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias , Humanos , Sistema Imunitário , Imunoterapia , Neoplasias/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA