Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(2): 1544-1554, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166478

RESUMO

Age-long ambition of medical scientists has always been advancement in healthcare and therapeutic medicine. Biomedical research indeed claims paramount importance in nanomedicine and drug delivery, and the development of biocompatible storage structures for delivering drugs stands at the heart of emerging scientific works. The delivery of drugs into the human body is nevertheless a nontrivial and challenging task, and it is often addressed by using amphiphilic compounds as nanosized delivery vehicles. Pluronics belong to a peculiar class of biocompatible and thermosensitive nonionic amphiphilic copolymers, and their self-assemblies are employed as drug delivery excipients because of their unique properties. We herein report on the encapsulation of diclofenac sodium within Pluronic F68 self-assemblies in water, underpinning the impact of the drug on the rheological and microstructural evolution of pluronic-based systems. The self-assembly and thermoresponsive micellization were studied through isothermal steady rheological experiments at different temperatures on samples containing 45 wt % Pluronic F68 and different amounts of diclofenac sodium. The adoption of scattering techniques, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), allowed for the description of the system features at the nanometer length scale, providing information about the characteristic size of each part of the micellar structures as a function of temperature and drug concentration. Diclofenac sodium is not a good fellow for Pluronic F68. The triblock copolymer aids the encapsulation of the drug, highly improving its water solubility, whereas diclofenac sodium somehow hinders Pluronic self-assembly. By using a simple empirical model and no fitting parameters, the steady viscosity can be predicted, although qualitatively, through the volume fraction of the micelles extracted through scattering techniques and compared to the rheological one. A tunable control of the viscous behavior of such biomedical systems may be achieved through the suitable choice of their composition.


Assuntos
Micelas , Poloxâmero , Humanos , Poloxâmero/química , Espalhamento a Baixo Ângulo , Diclofenaco , Difração de Raios X , Polímeros , Anti-Inflamatórios , Água/química
2.
Biomacromolecules ; 24(6): 2691-2705, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167573

RESUMO

Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/farmacologia , Hidrogéis/química , Substâncias Húmicas , Antioxidantes/farmacologia , Reagentes de Ligações Cruzadas/química , Antibacterianos/farmacologia
3.
Langmuir ; 38(44): 13429-13436, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36285658

RESUMO

We analyzed bubble rupture and hole opening dynamics in a non-Newtonian fluid by investigating the retraction process of thin films after inflation at different blowing rates. The experiments were modeled through a dimensional analysis, with the aim of establishing a general approach on the bubble rupture dynamics and discerning the role of viscous, elastic, surface, and inertial forces on the opening velocity, according to the nature of the specific fluid. A new mathematical model, which includes all possible contributions to the hole opening dynamics, was proposed, to the best of our knowledge for the first time. The experimental evidence on the opening velocity as a function of the inflation rate was found to be in good agreement with the prediction of the model. The sensitivity of our modeling was tested by comparing our results with the existing models of retracting velocity.

4.
Biomacromolecules ; 23(1): 443-453, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34936338

RESUMO

Exploring the chance to convert biowaste into a valuable resource, this study tests the potential role of humic acids (HA), a class of multifunctional compounds obtained by oxidative decomposition of biomass, as physical agents to improve gelatin's mechanical and thermal properties. To this purpose, gelatin-HA aqueous samples were prepared at increasing HA content. HA/gelatin concentrations changed in the range 2.67-26.67 (wt/wt)%. Multiple techniques were employed to assess the influence of HA content on the gel properties and to unveil the underlying mechanisms. HAs increased gel strength up to a concentration of 13.33 (wt/wt)% and led to a weaker gel at higher concentrations. FT-IR and DSC results proved that HAs can establish noncovalent interactions through H-bonding with gelatin. Coagulation phenomena occur because of HA-gelatin interactions, and at concentrations greater than 13.33 (wt/wt)%, HAs established preferential bonds with water molecules, preventing them from coordinating with gelatin chains. These features were accompanied by a change in the secondary structure of gelatin, which lost the triple helix structure and exhibited an increase in the random coil conformation. Besides, higher HA weight content caused swelling phenomena due to HA water absorption, contributing to a weaker gel. The current findings may be useful to enable a better control of gelatin structures modified with composted biowaste, extending their exploitation for a large set of technological applications.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Substâncias Húmicas , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água
5.
Soft Matter ; 15(6): 1396-1404, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30633291

RESUMO

Aqueous solutions of tri-block co-polymer surfactants are able to aggregate into a rich variety of microstructures, which can exhibit different rheological behaviors. In this work, we study the diversity of structures detected in aqueous solutions of Pluronic L64 at various concentrations and temperatures by experimental rheometry and dissipative particle dynamics (DPD) simulations. Mixtures of Pluronic L64 in water (ranging from 0 to 90 wt% Pluronic L64) have been studied in both linear and non-linear regimes by oscillatory and steady shear flow. The measurements allowed for the determination of a complete rheological phase diagram of the Pluronic L64-water system. The linear and non-linear regimes have been compared to equilibrium and non-equilibrium DPD bulk simulations of similar systems obtained by using the software LAMMPS. The molecular results are capable of reproducing the equilibrium structures, which are in complete agreement with the ones predicted through experimental linear rheology. The simulations also depict micellar microstructures after long time periods when a strong flow is applied. These structures are directly compared, from a qualitative point of view, with the corresponding experimental results and differences between the equilibrium and non-equilibrium phase diagrams are highlighted, proving the capability of detecting morphological changes caused by deformation in both experiments and DPD simulations. The effect of temperature on the rheology of the systems has been eventually investigated and compared with the already existing non-rheological phase diagram.

6.
Soft Matter ; 15(41): 8352-8360, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31577316

RESUMO

Concentrated aqueous solutions of surfactants, often referred to as pastes, experience complex phase and rheology changes upon dissolution in water, which is a typical step in the production of liquid detergents. During the dilution process, depending on water content, surfactant molecules can arrange in different morphologies, such as lamellar or cubic and hexagonal structures. These phases are characterized by different physico-chemical properties, such as viscosity or diffusivity, which lead to non-simple transport mechanisms during the dissolution process. In this work, we investigate the dissolution of concentrated Sodium Lauryl Ether Sulfate (SLES) pastes in water under quiescent conditions by coupling different experimental techniques. A thorough rheological characterization of the system showed non-monotonic changes of several orders of magnitude in its viscosity and viscoelastic moduli as a function of water content. Time-lapse microscopy allowed us to image the dynamic evolution of the phase changes as water penetrated in a disk-shaped sample (with the same geometry used in rheological tests). Numerical simulation, based on a simple diffusion-based multi-parameter model is shown to describe satisfactorily SLES dissolution data.

7.
Langmuir ; 34(19): 5646-5654, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664652

RESUMO

When a Newtonian bubble ruptures, the film retraction dynamics is controlled by the interplay of surface, inertial, and viscous forces. In case a viscoelastic liquid is considered, the scenario is enriched by the appearance of a new significant contribution, namely, the elastic force. In this paper, we investigate experimentally the retraction of viscoelastic bubbles inflated at different blowing rates, showing that the amount of elastic energy stored by the liquid film enclosing the bubble depends on the inflation history and in turn affects the velocity of film retraction when the bubble is punctured. Several viscoelastic liquids are considered. We also perform direct numerical simulations to support the experimental findings. Finally, we develop a simple heuristic model able to interpret the physical mechanism underlying the process.

8.
Int J Pharm ; 644: 123353, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37647976

RESUMO

In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.


Assuntos
Transição de Fase , Diclofenaco/química , Soluções/química , Poloxâmero/química , Reologia , Temperatura , Espectroscopia de Ressonância Magnética , Difusão
9.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176239

RESUMO

Polyethylene terephthalate (PET) is a thermoplastic material that is widely used in many application fields, such as packaging, construction and household products. Due to the relevant contribution of PET to global yearly solid waste, the recycling of such material has become an important issue. Disposed PET does not maintain the mechanical properties of virgin material, as exposure to water and other substances can cause multiple chain scissions, with subsequent degradation of the viscoelastic properties. For this reason, chain extension is needed to improve the final properties of the recycled product. Chain extension is generally performed through reactive extrusion. As the latter involves structural modification and flow of PET molecules, rheology is a relevant asset for understanding the process and tailoring the mechanical properties of the final products. This paper briefly reviews relevant rheological studies associated with the recycling of polyethylene terephthalate through the reactive extrusion process.

10.
Gels ; 8(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005094

RESUMO

Additive manufacturing-in particular, three-dimensional (3D) printing-has been introduced since the late 1980s, offering a novel paradigm for engineering design and manufacturing, as it allows the fabrication of very complex structures. Additive manufacturing of hydrogels is a very popular method to produce scaffolds to be used in tissue engineering and other biomedical applications, as well as in other advanced technological areas. When printing a thermoreversible physical hydrogel, a subtle balance between thermal and rheological parameters exists. The characteristic times of the sol-gel transition, regulated by a well-defined thermal history, must be optimized with respect to the characteristic processing times. In this work, we use this thermo-rheological approach to the additive manufacturing of a physical hydrogel. A low-cost desktop 3D printer for thermoplastic polymers was suitably modified to print a 1.5 wt% solution of k-carrageenan. The thermal behavior of the printer was determined by performing experimental measurements of the temperature-time evolution during the different processing steps, from solution loading, to the extrusion of the incoming gel, to the final solidification stage. In parallel, linear viscoelastic oscillatory shear measurements were performed in a rotational rheometer under thermal histories as close as possible to those previously measured in the printing process. The comparison between the rheological results and the quality of printing under different thermal histories is presented and discussed, highlighting the main relations between rheological and processing behavior, which are helpful in the assessment and optimization of the printing conditions.

11.
ACS Appl Polym Mater ; 3(8): 3788-3799, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34476399

RESUMO

Thermoplastic polymer-filler composites are excellent materials for bone tissue engineering (TE) scaffolds, combining the functionality of fillers with suitable load-bearing ability, biodegradability, and additive manufacturing (AM) compatibility of the polymer. Two key determinants of their utility are their rheological behavior in the molten state, determining AM processability and their mechanical load-bearing properties. We report here the characterization of both these physical properties for four bone TE relevant composite formulations with poly(ethylene oxide terephthalate)/poly(butylene terephthalate (PEOT/PBT) as a base polymer, which is often used to fabricate TE scaffolds. The fillers used were reduced graphene oxide (rGO), hydroxyapatite (HA), gentamicin intercalated in zirconium phosphate (ZrP-GTM) and ciprofloxacin intercalated in MgAl layered double hydroxide (MgAl-CFX). The rheological assessment showed that generally the viscous behavior dominated the elastic behavior (G″ > G') for the studied composites, at empirically determined extrusion temperatures. Coupled rheological-thermal characterization of ZrP-GTM and HA composites showed that the fillers increased the solidification temperatures of the polymer melts during cooling. Both these findings have implications for the required extrusion temperatures and bonding between layers. Mechanical tests showed that the fillers generally not only made the polymer stiffer but more brittle in proportion to the filler fractions. Furthermore, the elastic moduli of scaffolds did not directly correlate with the corresponding bulk material properties, implying composite-specific AM processing effects on the mechanical properties. Finally, we show computational models to predict multimaterial scaffold elastic moduli using measured single material scaffold and bulk moduli. The reported characterizations are essential for assessing the AM processability and ultimately the suitability of the manufactured scaffolds for the envisioned bone regeneration application.

12.
Langmuir ; 26(5): 3016-9, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20131839

RESUMO

Ordering induced by shear flow can be used to direct the assembly of particles in suspensions. Flow-induced ordering is determined by the balance between a range of forces, such as direct interparticle, Brownian, and hydrodynamic forces. The latter are modified when dealing with viscoelastic rather than Newtonian matrices. In particular, 1D stringlike structures of spherical particles have been observed to form along the flow direction in shear thinning viscoelastic fluids, a phenomenon not observed in Newtonian fluids at similar particle volume fractions. Here we report on the formation of freestanding crystalline patches in planes parallel to the shearing surfaces. The novel microstructure is formed when particles are suspended in viscoelastic, wormlike micellar solutions and only when the applied shear rate exceeds a critical value. In spite of the very low volume fraction (less than 0.01), particles arrange themselves in 2D crystalline patches along the flow direction. This is a bulk phenomenon because 2D crystals form throughout the whole gap between plates, with the gap thickness being much larger than the particle size. Shear flow may hence be an easy method to drive particles into crystalline order in suspensions with viscoelastic properties. The crystalline structure reported here could be used to design new materials with special mechanical, optical, thermal, or electric properties.


Assuntos
Coloides/química , Elasticidade , Fenômenos Mecânicos , Microscopia , Reologia , Viscosidade
13.
Materials (Basel) ; 12(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634705

RESUMO

Poly(ethyleneoxideterephthalate)/poly(butyleneterephthalate) (PEOT/PBT) segmented block copolymers are widely used for the manufacturing of 3D-printed bio-scaffolds, due to a combination of several properties, such as cell viability, bio-compatibility, and bio-degradability. Furthermore, they are characterized by a relatively low viscosity at high temperatures, which is desired during the injection stages of the printing process. At the same time, the microphase separated morphology generated by the demixing of hard and soft segments at intermediate temperatures allows for a quick transition from a liquid-like to a solid-like behavior, thus favoring the shaping and the dimensional stability of the scaffold. In this work, for the first time, the rheology of a commercial PEOT/PBT material is studied over a wide range of temperatures encompassing both the melt state and the phase transition regime. Non-isothermal viscoelastic measurements under oscillatory shear flow allow for a quantitative determination of the material processability in the melt state. Additionally, isothermal experiments below the order⁻disorder temperature are used to determine the temperature dependence of the phase transition kinetics. The importance of the rheological characterization when designing the 3D-printing scaffold process is also discussed.

14.
J Pharm Sci ; 106(11): 3410-3412, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28712964

RESUMO

Surfactant molecules can give rise to different morphological structures, depending on numerous parameters such as temperature, surfactant concentration, and salinity. Specifically, the salt content can be easily tuned in a way to induce morphological transitions and modulate the rheological response. It is shown that nonsteroidal anti-inflammatory drugs can be used in the same way as classical binding salts in changing the rheological properties of the resulting gel-like system. On the one hand, the experimental results show that by tuning small details in the molecular conformation of the drug and its concentration in the micellar solution, it is possible to obtain the desired mechanical response. On the other hand, the results prove that rheology can be considered as a powerful tool to detect the drug release content, with obvious consequences on possible applications.


Assuntos
Anti-Inflamatórios não Esteroides/química , Tensoativos/química , Liberação Controlada de Fármacos , Excipientes/química , Géis/química , Micelas , Reologia , Sais/química , Soluções , Temperatura , Viscosidade
15.
J Colloid Interface Sci ; 394: 49-54, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23266026

RESUMO

Flow-Induced Self-Assembly (FISA) is the flow-driven formation of ordered structures in complex fluids. In this paper the effect of shear flow on the microstructure formation of dilute sphere suspensions in a viscoelastic fluid has been studied experimentally by optical microscopy techniques. The system is formed by Polymethylmethacrylate beads suspended in 20 wt.% aqueous solutions of Hydroxypropylcellulose at volume fractions ranging between 0.1% and 1.0%. Experiments show that, under the action of flow, beads migrate from the bulk to the shear walls, there forming strings aligned along the flow direction. Strings grow with time eventually reaching a steady-state final length. The alignment kinetics have been quantified by means of an alignment factor, which is a measure of the average length of the strings. The experimental results indicate that both shear rate and particle concentration are relevant factors in determining the alignment factor kinetics. In particular, it is shown that, upon increasing shear rate, strings grow both faster and longer. As a consequence, the characteristic time of the overall alignment process remains roughly constant. It is also shown that an increase in particle volume fraction determines effects similar to an increase of shear rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA