Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827528

RESUMO

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

2.
ACS Appl Polym Mater ; 6(1): 572-582, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230368

RESUMO

The application of frontal polymerization to additive manufacturing has advantages in energy consumption and speed of printing. Additionally, with frontal polymerization, it is possible to print free-standing structures that require no supports. A resin was developed using a mixture of epoxies and vinyl ether with an iodonium salt and peroxide initiating system that frontally polymerizes through radical-induced cationic frontal polymerization. The formulation, which was optimized for reactivity, physical properties, and rheology, allowed the printing of free-standing structures. Increasing ratios of vinyl ether and reactive cycloaliphatic epoxide were found to increase the front velocity. Addition of carbon nanofibers increased the front velocity more than the addition of milled carbon fibers. The resin filled with carbon nanofibers and fumed silica exhibited shear-thinning behavior and was suitable for extrusion-based printing at a weight fraction of 4 wt %. A desktop 3D printer was modified to control resin extrusion and deposition with a digital syringe dispenser. Flexural properties of molded and 3D-printed specimens showed that specimens printed in the transverse direction exhibited the lowest strength, likely due to the presence of voids, adhesion issues between filaments, and preferential carbon nanofiber alignment along the filaments. Finally, free-standing printing of single, angled filaments and helical geometries was successfully demonstrated by coordinating ultraviolet-based reaction initiation, low air pressure for resin extrusion, and printing speed to match front velocity.

3.
ACS Appl Mater Interfaces ; 15(15): 19403-19413, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37027250

RESUMO

Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization. The clays were found to reduce the front velocity of RICFP systems overall compared to systems with only fumed silica. It is hypothesized that chemical effects and water content produce this reduction when clays are added to the cationic system. Mechanical and thermal properties of composites were studied, along with filler dispersion in the cured material. Drying the clays in an oven increased the front velocity. Comparing thermally insulating wood flour to thermally conducting carbon fibers, we observed that the carbon fibers resulted in an increase in front velocity, while the wood flour reduced the front velocity. Finally, it was shown that acid-treated montmorillonite K10 polymerizes RICFP systems containing vinyl ether even in the absence of an initiator, resulting in a short pot life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA