Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Phys Chem Chem Phys ; 26(3): 2692-2703, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175663

RESUMO

Infrared messenger-tagging predissociation action spectroscopy (IRPD) is a well-established technique to record vibrational spectra of reactive molecular ions. One of its major drawbacks is that the spectrum of the messenger-ion complex is taken instead of that of the bare ion. In particular for small open-shell species, such as the Renner-Teller (RT) affected HCCH+ and DCCD+, the attachment of the tag may have a significant impact on the spectral features. Here we present the application of the novel leak-out spectroscopy (LOS) as a tag-free method to record the cis-bending of the HCCH+ (∼700 cm-1) and DCCD+ cations (∼520 cm-1), using a cryogenic ion trap end user station at the FELIX laboratory. We demonstrate that the obtained LOS spectrum is equivalent to a previously recorded laser-induced reactions (LIR) spectrum of HCCH+. The bending modes are the energetically lowest-lying vibrational modes targeted with LOS so far, showing its potential as a universal broadband spectroscopic technique. Furthermore, we have investigated the effect of the rare gas attachment by recording the vibrational spectra of Ne- and Ar-tagged HCCH+. We found that the Ne-attachment led to a shift in band positions and change in relative intensities, while the Ar-attachment even led to a complete quenching of the RT splitting, showing the importance of using a tag-free method for RT affected systems. The results are interpreted with the help of high-level ab initio calculations in combination with an effective Hamiltonian approach.

2.
J Chem Phys ; 158(8): 084305, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859081

RESUMO

The linear radical cation of cyanoacetylene, HC3N+ (2Π), is not only of astrophysical interest, being the, so far undetected, cationic counterpart of the abundant cyanoaceteylene, but also of fundamental spectroscopic interest due to its strong spin-orbit and Renner-Teller interactions. Here, we present the first broadband vibrational action spectroscopic investigation of this ion through the infrared pre-dissociation (IRPD) method using a Ne tag. Experiments have been performed using the FELion cryogenic ion-trap instrument in combination with the FELIX free-electron lasers and a Laservision optical parametric oscillator/optical parametric amplifier system. The vibronic splitting patterns of the three interacting bending modes (ν5, ν6, ν7), ranging from 180 to 1600 cm-1, could be fully resolved revealing several bands that were previously unobserved. The associated Renner-Teller and intermode coupling constants have been determined by fitting an effective Hamiltonian to the experimental data, and the obtained spectroscopic constants are in reasonable agreement with previous photoelectron spectroscopy (PES) studies and ab initio calculations on the HC3N+ ion. The influence of the attached Ne atom on the infrared spectrum has been investigated by ab initio calculations at the RCCSD(T)-F12a level of theory, which strongly indicates that the discrepancies between the IRPD and PES data are a result of the effects of the Ne attachment.

3.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37882337

RESUMO

Modeling environments that are not in local thermal equilibrium, such as protoplanetary disks or planetary atmospheres, with molecular spectroscopic data from space telescopes requires knowledge of the rate coefficients of rovibrationally inelastic molecular collisions. Here, we present such rate coefficients in a temperature range from 10 to 500 K for collisions of CO2 with He atoms in which CO2 is (de)excited in the bend mode. They are obtained from numerically exact coupled-channel (CC) calculations as well as from calculations with the less demanding coupled-states approximation (CSA) and the vibrational close-coupling rotational infinite-order sudden (VCC-IOS) method. All of the calculations are based on a newly calculated accurate ab initio four-dimensional CO2-He potential surface including the CO2 bend (ν2) mode. We find that the rovibrationally inelastic collision cross sections and rate coefficients from the CSA and VCC-IOS calculations agree to within 50% with the CC results at the rotational state-to-state level, except for the smaller ones and in the low energy resonance region, and to within 20% for the overall vibrational quenching rates except for temperatures below 50 K where resonances provide a substantial contribution. Our CC quenching rates agree with the most recent experimental data within the error bars. We also compared our results with data from Clary et al. calculated in the 1980s with the CSA [A. J. Banks and D. C. Clary, J. Chem. Phys. 86, 802 (1987)] and VCC-IOS [D. C. Clary, J. Chem. Phys. 78, 4915 (1983)] methods and a simple atom-atom model potential based on ab initio Hartree-Fock calculations and found that their cross sections agree fairly well with ours for collision energies above 500 cm-1, but that the inclusion of long range attractive dispersion interactions is crucial to obtain reliable cross sections at lower energies and rate coefficients at lower temperatures.

4.
Phys Rev Lett ; 129(24): 243401, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563246

RESUMO

Ultracold molecules undergo "sticky collisions" that result in loss even for chemically nonreactive molecules. Sticking times can be enhanced by orders of magnitude by interactions that lead to nonconservation of nuclear spin or total angular momentum. We present a quantitative theory of the required strength of such symmetry-breaking interactions based on classical simulation of collision complexes. We find static electric fields as small as 10 V/cm can lead to nonconservation of angular momentum, while we find nuclear spin is conserved during collisions. We also compute loss of collision complexes due to spontaneous emission and absorption of black-body radiation, which are found to be slow.

5.
J Chem Phys ; 157(6): 064105, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35963714

RESUMO

Astrophysical modeling of processes in environments that are not in local thermal equilibrium requires the knowledge of state-to-state rate coefficients of rovibrational transitions in molecular collisions. These rate coefficients can be obtained from coupled-channel (CC) quantum scattering calculations, which are very demanding, however. Here, we present various approximate but more efficient methods based on the coupled-states approximation (CSA), which neglects the off-diagonal Coriolis coupling in the scattering Hamiltonian in body-fixed coordinates. In particular, we investigated a method called NNCC (nearest-neighbor Coriolis coupling) [Yang et al., J. Chem. Phys. 148, 084101 (2018)] that includes Coriolis coupling to first order. The NNCC method is more demanding than the common CSA method but still much more efficient than full CC calculations, and it is substantially more accurate than CSA. All of this is illustrated by showing state-to-state cross sections and rate coefficients of rovibrational transitions induced in CO2 by collisions with He atoms. It is also shown that a further reduction of CPU time, practically without loss of accuracy, can be obtained by combining the NNCC method with the multi-channel distorted-wave Born approximation that we applied in full CC calculations in a previous paper.

6.
J Chem Phys ; 156(21): 214304, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676127

RESUMO

We present a joint experimental and theoretical study of rotationally inelastic collisions between NO (X2Π1/2, ν = 0, j = 1/2, f) radicals and CO (X1Σ+, ν = 0, j = 0) molecules at a collision energy of 220 cm-1. State-to-state scattering images for excitation of NO radicals into various final states were measured with high resolution by combining the Stark deceleration and velocity map imaging techniques. The high image resolution afforded the observation of correlated rotational excitations of NO-CO pairs, which revealed a number of striking scattering phenomena. The so-called "parity-pair" transitions in NO are found to have similar differential cross sections, independent of the concurrent excitation of CO, extending this well-known effect for collisions between NO and rare gas atoms into the realm of bimolecular collisions. Forward scattering is found for collisions that induce a large amount of rotational energy transfer (in either NO, CO, or both), which require low impact parameters to induce sufficient energy transfer. This observation is interpreted in terms of the recently discovered hard collision glory scattering mechanism, which predicts the forward bending of initially backward receding trajectories if the energy uptake in the collision is substantial in relation to the collision energy. The experimental results are in good agreement with the predictions from coupled-channels quantum scattering calculations based on an ab initio NO-CO potential energy surface.

7.
J Chem Phys ; 155(3): 034105, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293892

RESUMO

Modeling protoplanetary disks and other interstellar media that are not in local thermal equilibrium require the knowledge of rovibrational transition rate coefficients of molecules in collision with helium and hydrogen. We present a computational method based on the numerically exact coupled-channel (CC) method for rotational transitions and a multi-channel distorted-wave Born approximation (MC-DWBA) for vibrational transitions to calculate state-to-state rate coefficients. We apply this method to the astrophysically important case of CO2-He collisions, using newly computed ab initio three-dimensional potential energy surfaces for CO2-He with CO2 distorted along the symmetric and asymmetric stretch (ν1 and ν3) coordinates. It is shown that the MC-DWBA method is almost as accurate as full CC calculations, but more efficient. We also made computations with the more approximate vibrational coupled-channel rotational infinite-order sudden method but found that this method strongly underestimates the vibrationally inelastic collision cross sections and rate coefficients for both CO2 modes considered.

8.
Phys Chem Chem Phys ; 22(27): 15081-15104, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32458891

RESUMO

Resonance states are characterized by an energy that is above the lowest dissociation threshold of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules possess a large number of long- and short-lived resonance (quasibound) states. A considerable number of rotational-vibrational resonance states are accessible not only via quantum-chemical computations but also by spectroscopic and scattering experiments. In a number of chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of rotational-vibrational resonance states is becoming more and more common. There are different first-principles techniques to compute and rationalize rotational-vibrational resonance states: one can perform scattering calculations or one can arrive at rovibrational resonances using variational or variational-like techniques based on methods developed for determining bound eigenstates. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance states, discusses theoretical methods and computational tools allowing their efficient determination, and shows numerical examples from the authors' previous studies on the identification and characterization of rotational-vibrational resonances of polyatomic molecular systems.

9.
J Chem Phys ; 153(24): 244302, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380097

RESUMO

The experimental characterization of scattering resonances in low energy collisions has proven to be a stringent test for quantum chemistry calculations. Previous measurements on the NO-H2 system at energies down to 10 cm-1 challenged the most sophisticated calculations of potential energy surfaces available. In this report, we continue these investigations by measuring the scattering behavior of the NO-H2 system in the previously unexplored 0.4 cm-1-10 cm-1 region for the parity changing de-excitation channel of NO. We study state-specific inelastic collisions with both para- and ortho-H2 in a crossed molecular beam experiment involving Stark deceleration and velocity map imaging. We are able to resolve resonance features in the measured integral and differential cross sections. Results are compared to predictions from two previously available potential energy surfaces, and we are able to clearly discriminate between the two potentials. We furthermore identify the partial wave contributions to these resonances and investigate the nature of the differences between collisions with para- and ortho-H2. Additionally, we tune the energy spreads in the experiment to our advantage to probe scattering behavior at energies beyond our mean experimental limit.

10.
J Chem Phys ; 153(6): 064301, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287454

RESUMO

We present a combined experimental and theoretical study of state-to-state inelastic collisions between NO (X 2Π1/2, j = 1/2, f) radicals and D2 (j = 0, 1, 2, 3) molecules at collision energies of 100 cm-1 and 750 cm-1. Using the combination of Stark deceleration and velocity map imaging, we fully resolve pair-correlated excitations in the scattered molecules. Both spin-orbit conserving and spin-orbit changing transitions in the NO radical are measured, while the coincident rotational excitation (j = 0 → j = 2) and rotational de-excitation (j = 2 → j = 0 and j = 3 → j = 1) in D2 are observed. De-excitation of D2 shows a strong dependence on the spin-orbit excitation of NO. We observe translation-to-rotation energy transfer as well as direct rotation-to-rotation energy transfer at the lowest collision energy probed. The experimental results are in good agreement with cross sections obtained from quantum coupled-channels calculations based on recent NO-D2 potential energy surfaces. The observed trends in the correlated scattering cross sections are understood in terms of the NO-D2 quadrupole-quadrupole interaction.

11.
Phys Rev Lett ; 123(12): 123402, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633957

RESUMO

The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.

12.
J Chem Phys ; 150(6): 064106, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30770001

RESUMO

Constructing accurate global potential energy surfaces (PESs) describing chemically reactive molecule-molecule collisions of alkali metal dimers presents a major challenge. To be suitable for quantum scattering calculations, such PESs must represent accurately three- and four-body interactions, describe conical intersections, and have a proper asymptotic form at the long range. Here, we demonstrate that such global potentials can be obtained by Gaussian Process (GP) regression merged with the analytic asymptotic expansions at the long range. We propose an efficient sampling technique, which allows us to construct an accurate global PES accounting for different chemical arrangements with <2500 ab initio calculations. We apply this method to (NaK)2 and obtain the first global PES for a system of four alkali metal atoms. The resulting surface exhibits a complex landscape including a pair and a quartet of symmetrically equivalent local minima and a seam of conical intersections. The dissociation energy found from our ab initio calculations is 4534 cm-1. This result is reproduced by the GP models with an error of less than 3%. The GP models of the PES allow us to analyze the features of the global PES, representative of general alkali metal four-atom interactions. Understanding these interactions is of key importance in the field of ultracold chemistry.

13.
Phys Chem Chem Phys ; 20(18): 12444-12453, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697730

RESUMO

We present a combined experimental and theoretical study of state-to-state inelastic scattering of NO(X2Π1/2, j = 1/2f) with O2(X3Σg-) molecules at a collision energy of 480 cm-1, focusing in particular on the observation and interpretation of correlated excitations in both NO and O2. Various final states of the NO radical, in both spin-orbit manifolds, were measured with high resolution using a crossed molecular beam apparatus which employs a combination of Stark deceleration and velocity map imaging. Velocity map imaging directly measures both the angular distribution and the radial velocity distribution of the scattered NO molecules, which probes the kinetic energy uptake or release and hence correlated excitations of NO-O2 pairs. Simultaneous excitations of NO and O2 were resolved for all studied final states of NO. In all cases, the experimental results excellently agree with the results of simulations based on quantum scattering calculations. Trends are discussed by analyzing the scattering wave functions from the calculations.

14.
J Chem Phys ; 149(8): 084306, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193486

RESUMO

Colliding molecules behave fundamentally differently at high and low collision energies. At high energies, a collision can be described to a large extent using classical mechanics, and the scattering process can be compared to a billiard-ball-like collision. At low collision energies, the wave character of the collision partners dominates, and only quantum mechanics can predict the outcome of an encounter. It is, however, not so clear how these limits evolve into each other as a function of the collision energy. Here, we investigate and visualize this evolution using a special feature of the differential cross sections for inelastic collisions between NO radicals and He atoms. The so-called "parity-pair" transitions have similar differential cross sections at high collision energies, whereas their cross sections are significantly different in the quantum regime at low energies. These transitions can be used as a probe for the quantum nature of the collision process. The similarity of the parity-pair differential cross sections at high energies could be theoretically explained if the first-order Born approximation were applicable. We found, however, that the anisotropy of the NO-He interaction potential is too strong for the first-order Born approximation to be valid, so higher-order perturbations must be taken into account.

15.
J Phys Chem A ; 121(40): 7446-7454, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28910536

RESUMO

We present state-to-state differential cross sections for collisions of NO molecules (X2Π1/2, j = 1/2f) with para-H2 and ortho-D2 molecules, at a collision energy of 510 and 450 cm-1, respectively. The angular scattering distributions for various final states of the NO radical are measured with high resolution using a crossed molecular beam apparatus that employs the combination of Stark deceleration and velocity map imaging. Rotational rainbows as well as diffraction oscillations are fully resolved in the scattering images. The observed angular scattering distributions are in excellent agreement with the cross sections obtained from quantum close-coupling scattering calculations based on recently computed NO-H2 potential energy surfaces, except for excitation of NO into the j = 7/2f channel. For this particular inelastic channel, a significant discrepancy with theory is observed, despite various additional measurements and calculations, at present, not understood.

17.
J Chem Phys ; 147(8): 084306, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863529

RESUMO

We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O2-O2, relevant for the theoretical description of collision-induced absorption in the forbidden X3Σg- → a1Δg and X3Σg- → b1Σg+ bands at 7883 cm-1 and 13 122 cm-1, respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O2-O2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

18.
J Chem Phys ; 147(8): 084307, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863543

RESUMO

We derive the theory of collision-induced absorption for electronic transitions in the approximation of an isotropic interaction potential. We apply this theory to the spin-forbidden X3Σg-→a1Δg and X3Σg-→b1Σg+ transitions in O2-O2, which are relevant for calibration in atmospheric studies. We consider two mechanisms for breaking the spin symmetry, either by the intermolecular exchange interaction between paramagnetic collision partners or by the intramolecular spin-orbit coupling. The calculations for the exchange-based mechanism employ the diabatic potential energy surfaces and transition dipole moment surfaces reported in Paper I [T. Karman et al., J. Chem. Phys. 147, 084306 (2017)]. We show that the line shape of the theoretical absorption spectra is insensitive to the large uncertainty in the electronic transition dipole moment surfaces. We also perform calculations using a simple model of the alternative mechanism involving intramolecular spin-orbit coupling, which leads to absorption intensities which are well below the experimental results. The relative intensity of this spin-orbit-based mechanism may impact the relative contribution to the absorption by collisions with diamagnetic collision partners, such as the atmospherically relevant N2 molecule. We furthermore show that both the line shape and temperature dependence are signatures of the underlying transition mechanism.

19.
J Chem Phys ; 147(1): 013918, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688409

RESUMO

We present state-to-state differential cross sections for collisions of NO molecules (X2Π1/2,j=1/2,f) with He atoms and ortho-D2 (j = 0) molecules as a function of collision energy. A high angular resolution obtained using the combination of Stark deceleration and velocity map imaging allows for the observation of diffraction oscillations in the angular scattering distributions. Differences in the differential cross sections and, in particular, differences in the angular spacing between individual diffraction peaks are observed. Since the masses of D2 and He are almost equal and since D2(j = 0) may be considered as a pseudo-atom, these differences directly reflect the larger size of D2 as compared to He. The observations are in excellent agreement with the cross sections obtained from quantum close-coupling scattering calculations based on accurate ab initio NO-He and NO-D2 potential energy surfaces. For the latter, we calculated a new NO-D2 potential energy surface.

20.
Phys Rev Lett ; 116(15): 153001, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127965

RESUMO

An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA