Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 15(3): 960-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26831523

RESUMO

The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Deleção de Genes , Redes Reguladoras de Genes , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Ontologia Genética , Genoma Fúngico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
EMBO Rep ; 16(1): 116-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25427557

RESUMO

The study of conserved protein interaction networks seeks to better understand the evolution and regulation of protein interactions. Here, we present a quantitative proteomic analysis of 18 orthologous baits from three distinct chromatin-remodeling complexes in Saccharomyces cerevisiae and Homo sapiens. We demonstrate that abundance levels of orthologous proteins correlate strongly between the two organisms and both networks have highly similar topologies. We therefore used the protein abundances in one species to cross-predict missing protein abundance levels in the other species. Lastly, we identified a novel conserved low-abundance subnetwork further demonstrating the value of quantitative analysis of networks.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24722732

RESUMO

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Assuntos
Mapas de Interação de Proteínas/genética , Proteômica , Fator de Transcrição RelA/biossíntese , Fatores de Transcrição/biossíntese , Citoplasma/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Espectrometria de Massas , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética
4.
Mol Cell Proteomics ; 13(11): 3114-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073741

RESUMO

Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/genética , Ácidos Hidroxâmicos/farmacologia , Mapas de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligação Proteica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vorinostat
5.
Nat Commun ; 10(1): 1118, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850613

RESUMO

It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic datasets from affinity purifications. Data is analyzed in a parallel fashion where a prey protein is scored in an individual affinity purification by aggregating information from the entire dataset. Topological scores span a broad range of values indicating the enrichment of an individual protein in every bait protein purification. TopS is applied to interaction networks derived from human DNA repair proteins and yeast chromatin remodeling complexes. TopS highlights potential direct protein interactions and modules within complexes. TopS is a rapid method for the efficient and informative computational analysis of datasets, is complementary to existing analysis pipelines, and provides important insights into protein interaction networks.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Mapas de Interação de Proteínas , Montagem e Desmontagem da Cromatina , Reparo do DNA , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Funções Verossimilhança , Proteômica/estatística & dados numéricos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
PLoS One ; 11(6): e0155492, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27248496

RESUMO

Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Heterocromatina/metabolismo , Proteínas de Ciclo Celular , Homólogo 5 da Proteína Cromobox , Proteínas de Ligação a DNA , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA