RESUMO
Aquaporin 1 (AQP1) is one of thirteen known mammalian aquaporins. Its main function is the transport of water across cell membranes. Lately, a role of AQP has been attributed to other physiological and pathological functions including cell migration and peripheral pain perception. AQP1 has been found in several parts of the enteric nervous system, e.g., in the rat ileum and in the ovine duodenum. Its function in the intestine appears to be multifaceted and is still not completely understood. The aim of the study was to analyze the distribution and localization of AQP1 in the entire intestinal tract of mice. AQP1 expression was correlated with the hypoxic expression profile of the various intestinal segments, intestinal wall thickness and edema, as well as other aspects of colon function including the ability of mice to concentrate stools and their microbiome composition. AQP1 was found in a specific pattern in the serosa, the mucosa, and the enteric nervous system throughout the gastrointestinal tract. The highest amount of AQP1 in the gastrointestinal tract was found in the small intestine. AQP1 expression correlated with the expression profiles of hypoxia-dependent proteins such as HIF-1α and PGK1. Loss of AQP1 through knockout of AQP1 in these mice led to a reduced amount of bacteroidetes and firmicutes but an increased amount of the rest of the phyla, especially deferribacteres, proteobacteria, and verrucomicrobia. Although AQP-KO mice retained gastrointestinal function, distinct changes regarding the anatomy of the intestinal wall including intestinal wall thickness and edema were observed. Loss of AQP1 might interfere with the ability of the mice to concentrate their stool and it is associated with a significantly different composition of the of the bacterial stool microbiome.
Assuntos
Aquaporina 1 , Colo , Trato Gastrointestinal , Animais , Camundongos , Ratos , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporinas/metabolismo , Colo/metabolismo , Duodeno/metabolismo , Edema , Hipóxia , Mamíferos/metabolismo , Camundongos Knockout , Ovinos , Trato Gastrointestinal/metabolismoRESUMO
Neuroblastoma is a rare disease. Rare are also the possibilities to test new therapeutic options for neuroblastoma in clinical trials. Despite the constant need to improve therapy and outcomes for patients with advanced neuroblastoma, clinical trials currently only allow for testing few substances in even fewer patients. This increases the need to improve and advance preclinical models for neuroblastoma to preselect favorable candidates for novel therapeutics. Here we propose the use of a new patient-derived 3D slice-culture perfusion-based 3D model in combination with rapid treatment evaluation using isothermal microcalorimetry exemplified with treatment with the novel carbonic anhydrase IX and XII (CAIX/CAXII) inhibitor SLC-0111. Patient samples showed a CAIX expression of 18% and a CAXII expression of 30%. Corresponding with their respective CAIX expression patterns, the viability of SH-EP cells was significantly reduced upon treatment with SLC-0111, while LAN1 cells were not affected. The inhibitory effect on SH-SY5Y cells was dependent on the induction of CAIX expression under hypoxia. These findings corresponded to thermogenesis of the cells. Patient-derived organotypic slice cultures were treated with SLC-0111, which was highly effective despite heterogeneity of CAIX/CAXII expression. Thermogenesis, in congruence with the findings of the histological observations, was significantly reduced in SLC-0111-treated samples. In order to extend the evaluation time, we established a perfusion-based approach for neuroblastoma tissue in a 3D perfusion-based bioreactor system. Using this system, excellent tissue quality with intact tumor cells and stromal structure in neuroblastoma tumors can be maintained for 7 days. The system was successfully used for consecutive drug response monitoring with isothermal microcalorimetry. The described approach for drug testing, relying on an advanced 3D culture system combined with a rapid and highly sensitive metabolic assessment, can facilitate development of personalized treatment strategies for neuroblastoma.
Assuntos
Inibidores da Anidrase Carbônica , Neuroblastoma , Antígenos de Neoplasias/metabolismo , Reatores Biológicos , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Humanos , Neuroblastoma/tratamento farmacológico , Perfusão , Compostos de Fenilureia , SulfonamidasRESUMO
We present a novel approach to a personalized therapeutic concept for solid tumors. We illustrate this on a rare childhood tumor for which only a generalized treatment concept exists using carbonic anhydrase IX and aquaporin 1 inhibitors. The use of microcalorimetry as a refined in vitro method for evaluation of drug susceptibility in organotypic slice culture has not previously been established. Rapid microcalorimetric drug response assessment can refine a general treatment concept when it is applied in cases in which tumors do not respond to conventional chemo-radiation treatment. For solid tumors, which do not respond to classical treatment, and especially for rare tumors without an established protocol rapid microcalorimetric drug response testing presents an elegant novel approach to test alternative therapeutic approaches. While improved treatment concepts have led to improved outcome over the past decades, the prognosis of high risk disease is still poor and rethinking of clinical trial design is necessary. A small patient population combined with the necessity to assess experimental therapies for rare solid tumors rather at the time of diagnosis than in relapsed or refractory patients provides great challenges. The possibility to rapidly compare established protocols with innovative therapeutics presents an elegant novel approach to refine and personalize treatment.
Assuntos
Antineoplásicos/uso terapêutico , Aquaporina 1/antagonistas & inibidores , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão , Fatores Etários , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Biomarcadores Tumorais , Biópsia , Calorimetria , Inibidores da Anidrase Carbônica/administração & dosagem , Inibidores da Anidrase Carbônica/efeitos adversos , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/metabolismo , Medicina de Precisão/métodosRESUMO
The hypoxic tumour microenvironment of solid tumours represents an important starting point for modulating progression and metastatic spread. Carbonic anhydrase IX (CAIX) is a known HIF-1α-dependent key player in maintaining cell pH conditions under hypoxia. We show that CAIX is strongly expressed in esophageal carcinoma tissues. We hypothesize that a moderate CAIX expression facilitates metastases and thereby worsens prognosis. Selective inhibition of CAIX by specific CAIX inhibitors and a CAIX knockdown effectively inhibit proliferation and migration in vitro. In the orthotopic esophageal carcinoma model, the humanized HER2 antibody trastuzumab down-regulates CAIX, possibly through CAIX's linkage with HER2 in the hypoxic microenvironment. Our results show CAIX to be an essential part of the tumour microenvironment and a possible master regulator of tumour progression. This makes CAIX a highly effective and feasible therapeutic target for selective cancer treatment.
Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Hipóxia/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Relação Estrutura-Atividade , Análise Serial de Tecidos , Células Tumorais CultivadasRESUMO
Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.
Assuntos
Apendicite/diagnóstico , Água/química , Doença Aguda , Adolescente , Aquaporina 1/biossíntese , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Permeabilidade , Índice de Gravidade de DoençaRESUMO
Carbonic anhydrase IX (CAIX) is involved in pathological processes including tumorgenicity, metastases and poor survival in solid tumors. Twenty-two neuroblastoma samples of patients who were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated immunohistochemically for expression of CAIX. Results were correlated with clinical parameters and outcome. Neuroblastoma Kelly and SH-EP-Tet-21/N cells were examined for CAIX expression and inhibited with specific inhibitors, FC5-207A and FC8-325A. 32% of neuroblastoma tumors expressed CAIX. This was significantly associated with poorer survival. Kelly and SH-EP-Tet-21/N cells showed a major increase of CAIX RNA under hypoxic conditions. Proliferation of Kelly cells was significantly decreased by CAIX inhibitors, FC5-207A and FC8-325A, while proliferation of SH-EP-Tet-21/N cells was only significantly affected by FC8-325A. CAIX is a potent biomarker that predicts survival in neuroblastoma patients. CAIX-targeted therapy in neuroblastoma cell lines is highly effective and strengthens the potential of CAIX as a clinical therapeutic target in a selected patient collective.
Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Antineoplásicos/química , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/química , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactente , Recém-Nascido , Estrutura Molecular , Neuroblastoma/patologia , Relação Estrutura-Atividade , Análise de Sobrevida , Células Tumorais CultivadasRESUMO
PURPOSE: Several oxygen-dependent factors, e.g., CAIX (carbonic anhydrase IX) or phosphoglycerate kinase 1 (PGK1) interacting with the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1) have been shown to be involved in processes of tumour pathology including tumourigenicity, tumour cell dissemination and poor survival in several solid tumour entities. The aim of the current study was to evaluate the influence of the hypoxia-inducible factors CAIX and PGK1 on progression of neuroblastoma and to evaluate the clinical relevance of possible therapeutic approaches. METHODS: Expression of hypoxia-dependent factors PGK1 and CAIX was examined in neuroblastoma specimen, was correlated with clinical parameters, and was studied in neuroblastoma cells. The impact of these hypoxic factors was evaluated by proliferation assays under targeted therapy. RESULTS: Expression of hypoxia-dependent factors was found in 50 % of neuroblastoma specimen. In neuroblastoma cells, CAIX and PGK1 expression is up regulated under hypoxia and correlates with response to targeted anti-proliferative treatment. The negative impact on survival, although significant for both CAIX and PGk1, appears to be stronger for CAIX. CONCLUSIONS: Our results show that the hypoxic factors in the tumour`s microenvironment further the progression of tumour disease. This strengthens the perspectives for additive novel therapeutic approaches targeting hypoxia-dependent factors in this childhood disease.
Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Progressão da Doença , Neuroblastoma/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Biomarcadores Tumorais/metabolismo , Anidrase Carbônica IX , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Pré-Escolar , Feminino , Humanos , Hipóxia , Lactente , Estimativa de Kaplan-Meier , MasculinoRESUMO
PURPOSE: It has previously been shown that gefitinib-treated patients with epidermal growth factor receptor (EGFR) gene amplification or high polysomy had a statistically significant improvement in response, time to progression, and survival in non-small cell lung cancer (NSCLC). Only few studies utilizing anti-EGFR treatment in advanced esophageal adenocarcinomas have been performed and the results have been heterogeneous. The aim of this study was to evaluate EGFR-targeted therapy with gefitinib in esophageal adenocarcinoma with a high EGFR polysomy. METHODS: Novel esophageal cell lines PT6216 and LN6216c were established from primary tumor and lymph node metastasis of a patient with highly aggressive and metastatic adenocarcinoma. Pathological examination including tumor differentiation and prognostic marker analysis, immunohistochemical EGFR expression analysis, EGFR fluorescence in situ hybridization, and mutation analysis were performed. Response of novel cell lines to gefitinib treatment was evaluated by cell proliferation and vitality assays. Fifty-four esophageal adenocarcinoma specimens were evaluated for EGFR gene copy gain. RESULTS: The primary tumor cell line PT6216 and the lymph node cell line LN6216c show a homogenously high polysomy for EGFR determined by FISH analysis. Cell proliferation and vitality are highly sensitive to the tyrosine kinase inhibitor gefitinib compared to esophageal control cells without a high polysomy for EGFR. High polysomy for EGFR was found in 35 % of patients. CONCLUSION: We show for the first time a significant treatment response to the EGFR tyrosine kinase inhibitor gefitinib in esophageal tumor cells with a high polysomy for EGFR, suggesting a future role of anti-EGFR therapy for esophageal adenocarcinoma patients with a high EGFR polysomy.
Assuntos
Adenocarcinoma/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Amplificação de Genes , Quinazolinas/uso terapêutico , Adenocarcinoma/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Gefitinibe , Amplificação de Genes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: In spite of multimodular treatment, the therapeutic options for esophageal carcinoma are limited, and metastases remain the leading cause of tumor-related mortality. Expression of the chemokine receptor CXCR4 significantly correlates with poor survival rates in patients with esophageal carcinoma and is associated with lymph node and bone marrow metastases. The aim of this study was to evaluate the effect of the CXCR4 antagonist CTCE-9908 on metastatic homing and primary tumor growth in vitro and in vivo in an orthotopic xenograft model of esophageal cancer. MATERIALS AND METHODS: OE19 cells were examined for stromal cell-derived factor 1 alpha-mediated migration under CTCE-9908 treatment. The CTCE-9908 treatment was further evaluated in an in vitro proliferation assay and orthotopic esophageal model, accompanied by magnetic resonance imaging. Tumor and metastases were immunohistochemically examined for CXCR4 expression. RESULTS: CTCE-9908 has an inhibitory effect on stromal cell-derived factor 1 alpha-mediated migration and proliferation of OE19 cells. Treatment with CTCE-9908 in the orthotopic esophageal model leads to a reduction of metastatic spread and primary tumor growth. This was confirmed by magnetic resonsance imaging. Treatment with CTCE-9908 results in altered CXCR4 expression pattern exhibiting a high degree of variability. CONCLUSION: CTCE-9908 effectively inhibits OE19 cell migration and proliferation in vitro, reduces metastases to lung, liver, and lymph nodes in vivo, and moreover leads to tumor growth reduction in an orthotopic model of esophageal carcinoma.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/química , Neoplasias Esofágicas/patologia , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Imageamento por Ressonância Magnética , Camundongos , Peptídeos/farmacologia , Receptores CXCR4/análiseRESUMO
BACKGROUND: L1 cell adhesion molecule (CD171) has been detected in different malignant tumors and is associated with unfavorable outcome. It thus represents a target for tumor diagnosis and therapy. In this study, we assessed L1 expression in more than 8000 normal human tissues and different types of tumors, both malignant and non-malignant, and neural and non-neural. MATERIALS AND METHODS: Tissue micro-arrays, including a multi-tumor-array of 128 different tumor types, up to 50 samples of each type (approximately 5500 different samples), arrays with approximately 3000 different prostate and 600 mesenchymal tumor samples, and a normal human tissue-array were analyzed by immunohistochemistry with a monoclonal antibody using immunoperoxidase staining. RESULTS: L1 expression was detected in tumors of neural and neural crest origin and other types of non-neural tumors, but not in those of epithelial origin. In normal human tissues, L1 was detected in skin basal cells and small blood vessels, most notably in the mature placenta and peripheral nerves. CONCLUSION: This first comprehensive study of the importance of L1 expression in human demonstrates strong L1 overexpression in tumors of neuroectodermal and neural crest origin and an expression in only very few normal human tissues. L1 thus is a potentially important therapeutic target, particularly with respect to malignant melanoma, gastrointestinal stromal tumor, neuroblastoma, and certain subtypes of non-neural tumors.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias do Sistema Nervoso/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Humanos , Análise Serial de TecidosRESUMO
INTRODUCTION: Lower urinary tract symptoms (LUTS) in children are common. In 2005, Akbal et al published the dysfunctional voiding and incontinence scoring system (DVAISS) to assess patient's symptoms. Our study aimed to determine the value of this scoring system for predicting the severity and clinical course of voiding abnormalities in children and adolescents. MATERIAL AND METHODS: Patients' symptoms were scored using the DVAISS in children and adolescents with LUTS presenting for the first time to our pediatric urology department between January 2010 and December 2015. We correlated the calculated score with voiding volume, clinical course, and outcome. RESULTS: A total of 168 patients (113 boys, 55 girls; age 5-18 years) with isolated LUTS were included. In 53 patients (group 1), the DVAISS score was less than or equal to 8.5 and in the other 115 patients (group 2), the score was greater than 8.5 suggestive for relevant voiding abnormalities. Patients in group 1 showed a significantly higher average voiding volume (200 vs. 110 mL, p = 0.001). The median time for symptom resolution was significantly higher in group 2 than group 1 (14 vs. 8 months; p = 0.018). The severity of LUTS could be determined by these parameters. CONCLUSION: Based on the DVAISS, a prediction of the clinical course and approximate treatment duration is possible. Therefore, the DVAISS is useful to assess LUTS in children and is also a valuable tool in rating the severity of the disease. It is also a quite precise predictor of the time needed to resolve the symptoms.
Assuntos
Sintomas do Trato Urinário Inferior , Incontinência Urinária , Transtornos Urinários , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Sintomas do Trato Urinário Inferior/diagnóstico , Sintomas do Trato Urinário Inferior/etiologia , Sintomas do Trato Urinário Inferior/terapia , Masculino , Incontinência Urinária/diagnóstico , Incontinência Urinária/etiologia , Incontinência Urinária/terapia , MicçãoRESUMO
Neuroblastoma, like other cancer types, has an increased need for energy. This results in an increased thermogenic profile of the cells. How tumor cells optimize their energy efficiency has been discussed since Warburg described the fact that tumor cells prefer an anaerobic to an aerobic metabolism in the 1920s. An important question is how far the energy efficiency is influenced by the substrate. The aim of this study was to investigate how the metabolic activity of neuroblastoma cells is stimulated by addition of glucose or fructose to the medium and if this can be measured accurately by using isothermal microcalorimetry. Proliferation of Kelly and SH-EP Tet-21/N cells was determined in normal medium, in fructose-enriched, in glucose-enriched and in a fructose/glucose-enriched environment. Heat development of cells was measured by isothermal microcalorimetry. The addition of fructose, glucose or both to the medium led to increases in the metabolic activity of the cells, resulting in increased proliferation under the influence of fructose. These changes were reflected in an enhanced thermogenic profile, mirroring the results of the proliferation assay. The tested neuroblastoma cells prefer fructose metabolism over glucose metabolism, a quality that provides them with a survival benefit under unfavorable low oxygen and low nutrient supply when fructose is available. This can be quantified by measuring thermogenesis.
RESUMO
The water channel aquaporin 1 (AQP1) has been implicated in tumor progression and metastasis. It is hypothesized that AQP1 expression can facilitate the transmembrane water transport leading to changes in cell structure that promote migration. Its impact in neuroblastoma has not been addressed so far. The objectives of this study have been to determine whether AQP1 expression in neuroblastoma is dependent on hypoxia, to demonstrate whether AQP1 is functionally relevant for migration, and to further define AQP1-dependent properties of the migrating cells. This was determined by investigating the reaction of neuroblastoma cell lines, particularly SH-SY5Y, Kelly, SH-EP Tet-21/N and SK-N-BE(2)-M17 to hypoxia, quantitating the AQP1-related water permeability by stopped-flow spectroscopy, and studying the migration-related properties of the cells in a modified transwell assay. We find that AQP1 expression in neuroblastoma cells is up-regulated by hypoxic conditions, and that increased AQP1 expression enabled the cells to form a phenotype which is associated with migratory properties and increased cell agility. This suggests that the hypoxic tumor microenvironment is the trigger for some tumor cells to transition to a migratory phenotype. We demonstrate that migrating tumor cell express elevated AQP1 levels and a hypoxic biochemical phenotype. Our experiments strongly suggest that elevated AQP1 might be a key driver in transitioning stable tumor cells to migrating tumor cells in a hypoxic microenvironment.
RESUMO
Testicular torsion is a surgical emergency. Early diagnosis and surgical treatment are vital in order to preserve the affected gonad. Current surgical teaching emphasizes sudden, severe, persistent, unilateral scrotal pain as a cardinal symptom of testicular torsion. We present the case of unilateral testicular torsion in a 14-year-old patient who presented with the absence of severe pain. Despite a delayed presentation to the emergency department, the gonad could be salvaged successfully. Literature on the topic of testicular torsion presenting with minimal pain is limited. Nevertheless, pediatric surgeons might be faced with cases similar to the one we describe. Underestimating this phenomenon might lead to a delay of treatment. In such cases, ultrasound can be a beneficial addition in the diagnosis and accelerate definitive operative treatment. The presented case clearly demonstrates that, although we do not include testicular torsion without severe pain in our surgical teaching algorithms, we might encounter it in our clinical practice.
RESUMO
Neuroblastoma is a biologically very heterogeneous tumor with its clinical manifestation ranging from spontaneous regression to highly aggressive metastatic disease. Several adverse factors have been linked to oncogenesis, tumor progression and metastases of neuroblastoma including NMYC amplification, the neural adhesion molecule NCAM, as well as CXCR4 as a promoter of metastases. In this study, we investigate to what extent the expression of AQP1 in neuroblastoma correlates with changing cellular factors such as the hypoxic status, differentiation, expression of known adverse factors such as NMYC and NCAM, and CXCR4-related metastatic spread. Our results show that while AQP1 expression leads to an increased migratory behavior of neuroblastoma cells under hypoxic conditions, we find that hypoxia is associated with a reduction of NMYC in the same cells. A similar effect can be observed when using the tetracycline driven mechanism of SH-EP/Tet cells. When NMYC is not expressed, the expression of AQP1 is increased together with an increased expression of HIF-1α and HIF-2α. We furthermore show that when growing cells in different cell densities, they express AQP1, HIF-1α, HIF-2α, NMYC and NCAM to different degrees. AQP1 expression correlates with a hypoxic profile of these cells with increased HIF-1α and HIF-2α expression, as well as with NMYC and NCAM expression in two out of three neuroblastoma cell lines. When investigating cell properties of the cells that actually migrate, we find that the increased APQ1 expression in the migrated cells correlates with an increased NMYC and NCAM expression again in two out of three cell lines. Expression of the tumor cell homing marker CXCR4 varies between different tumor areas and between cell lines. While some migrated tumor cells highly express CXCR4, cells of other origin do not. In the initial phase of migration, we determined a dominant role of AQP1 expression of migrating cells in the scratch assay.
RESUMO
The coincidence of two rare diseases such as congenital diaphragmatic hernia (CDH) and neuroblastoma is exceptional. With an incidence of around 2-3:10,000 and 1:8000 for either disease occurring on its own, the chance of simultaneous presentation of both pathologies at birth is extremely low. Unfortunately, the underlying processes leading to congenital malformation and neonatal tumors are not yet thoroughly understood. There are several hypotheses revolving around the formation of CDH and neuroblastoma. The aim of our study was to put the respective hypotheses of disease formation as well as known factors in this process into perspective regarding their similarities and possible overlaps of congenital disease formation. We present the joint occurrence of these two rare diseases based on a patient presentation and immunochemical prognostic marker evaluation. The aim of this manuscript is to elucidate possible similarities in the pathogeneses of both disease entities. Discussed are the role of toxins, cell differentiation, the influence of retinoic acid and NMYC as well as of hypoxia. The detailed discussion reveals that some of the proposed pathophysiological mechanisms of both malformations have common aspects. Especially disturbances of the retinoic acid pathway and NMYC expression can influence and disrupt cell differentiation in either disease. Due to the rarity of both diseases, interdisciplinary efforts and multi-center studies are needed to investigate the reasons for congenital malformations and their interlinkage with neonatal tumor disease.
RESUMO
Despite continuous improvements in multimodal therapeutic strategies, esophageal carcinoma maintains a high mortality rate. Metastases are a major life-limiting component; however, very little is known about why some tumors have high metastatic potential and others not. In this study, we investigated thermogenic activity and adhesion strength of primary tumor cells and corresponding metastatic cell lines derived from two patients with metastatic adenocarcinoma of the esophagus. We hypothesized that the increased metastatic potential of the metastatic cell lines correlates with higher thermogenic activity and decreased adhesion strength. Our data show that patient-derived metastatic esophageal tumor cells have a higher thermogenic profile as well as a decreased adhesion strength compared to their corresponding primary tumor cells. Using two paired esophageal carcinoma cell lines of primary tumor and lymph nodes makes the data unique. Both higher specific thermogenesis profile and decreased adhesion strength are associated with a higher metastatic potential. They are in congruence with the clinical patient presentation. Understanding these functional, biophysical properties of patient derived esophageal carcinoma cell lines will enable us to gain further insight into the mechanisms of metastatic potential of primary tumors and metastases. Microcalorimetric evaluation will furthermore allow for rapid assessment of new treatment options for primary tumor and metastases aimed at decreasing the metastatic potential.
Assuntos
Adenocarcinoma/patologia , Neoplasias Esofágicas/patologia , Metástase Linfática/patologia , Linhagem Celular Tumoral , Humanos , TermogêneseRESUMO
BACKGROUND: multisystem inflammatory syndrome in children (MIS-C) is a new disease associated with a recent infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Affected children can present predominantly with abdominal symptoms, fever and high inflammatory parameters that might lead to a consult by the pediatric surgeon and an indication for surgery. METHODS: clinical data of three patients with MIS-C that underwent surgery were collected. Histopathological analysis of the appendix was performed. RESULTS: we present the clinical course of three children with fever, abdominal pain and vomiting for several days. Clinical examination and highly elevated inflammation markers led to indication for laparoscopy; appendectomy was performed in two patients. Because of intraoperative findings or due to lack of postoperative improvement, all patients were reevaluated and tested positive for MIS-C associated laboratory parameters and were subsequently treated with corticosteroids, intravenous immunoglobulins, acetyl salicylic acid and/or light molecular weight heparin. CONCLUSIONS: we discuss the implications of MIS-C as a new differential diagnosis and stress the importance of assessing the previous medical history, identifying patterns of symptoms and critically surveilling the clinical course. We implemented an algorithm for pediatric surgeons to consider MIS-C as a differential diagnosis for acute abdomen that can be integrated into the surgical workflow.
RESUMO
We describe the development of an aggressive orthotopic metastatic model of esophageal cancer, which is visualized in real time with combined magnetic resonance imaging (MRI) and fluorescence imaging. The aim of the study was to describe the development of a novel model of metastatic tumor disease of esophageal carcinoma and use this model to evaluate fluorescence and MRI in early detection of local and metastatic disease. The human esophageal adenocarcinoma cell line PT1590 was stably transfected with green fluorescent protein (GFP). Nude mice were orthotopically implanted with PT1590-GFP cells. Orthotopic tumor growth as well as metastatic spread was examined by fluorescence imaging and high-resolution MRI at defined intervals after orthotopic implantation. Highly aggressive novel fluorescent cell lines were isolated from metastatic tissues and put into culture. After implantation of these cells, 100% of the animals developed orthotopic primary tumors. In 83% of animals, metastatic spread to liver, lung and lymph nodes was observed. Primary tumor growth could be visualized with fluorescence imaging and with MRI with high correlation between the 2 methods. Fluorescence imaging allows fast, sensitive, and economical imaging of the primary and metastatic tumor without anesthesia. With MRI, anatomical structures are visualized more precisely and tumors can be more accurately localized to specific organs. This model should prove highly useful to understand esophageal carcinoma and to identify novel therapeutics for this treatment-resistant disease.