Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(24): 247203, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922868

RESUMO

In the metallic magnet Nb_{1-y}Fe_{2+y}, the low temperature threshold of ferromagnetism can be investigated by varying the Fe excess y within a narrow homogeneity range. We use elastic neutron scattering to track the evolution of magnetic order from Fe-rich, ferromagnetic Nb_{0.981}Fe_{2.019} to approximately stoichiometric NbFe_{2}, in which we can, for the first time, characterize a long-wavelength spin density wave state burying a ferromagnetic quantum critical point. The associated ordering wave vector q_{SDW}=(0,0,l_{SDW}) is found to depend significantly on y and T, staying finite but decreasing as the ferromagnetic state is approached. The phase diagram follows a two-order-parameter Landau theory, for which all of the coefficients can now be determined. Our findings suggest that the emergence of spin density wave order cannot be attributed to band structure effects alone. They indicate a common microscopic origin of both types of magnetic order and provide strong constraints on related theoretical scenarios based on, e.g., quantum order by disorder.

2.
Phys Rev Lett ; 114(9): 097002, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793843

RESUMO

The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138 K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures.

3.
Nat Commun ; 15(1): 223, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172154

RESUMO

The heavy fermion paramagnet UTe2 exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe2 by measuring magnetic quantum oscillations in pristine quality crystals. We find an angular profile of quantum oscillatory frequency and amplitude that is characteristic of a quasi-2D Fermi surface, which we find is well described by two cylindrical Fermi sheets of electron- and hole-type respectively. Additionally, we find that both cylindrical Fermi sheets possess considerable undulation but negligible small-scale corrugation, which may allow for their near-nesting and therefore promote magnetic fluctuations that enhance the triplet pairing mechanism. Importantly, we find no evidence for the presence of any 3D Fermi surface sections. Our results place strong constraints on the possible symmetry of the superconducting order parameter in UTe2.

4.
Sci Rep ; 6: 25335, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27174799

RESUMO

One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger's theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition.

5.
Sci Prog ; 87(Pt 1): 51-78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15651639

RESUMO

Electrons in metals can self-organise. The complex interplay between lattice dynamics, electrostatic interaction and band structure brings forth numerous types of electronic order. Because of its spectacular phenomenology, superconductivity has enjoyed a central place among these, since its discovery nearly 100 years ago. This short introduction into one of the largest fields of condensed matter research focuses on the most fundamental experimental signatures of superconductivity--perfect conductivity and perfect diamagnetism--and their explanation. A conventional broken symmetry argument is presented, which introduces a superconducting order parameter in analogy to the case of superfluid 4He, and discusses its microscopic origin in the framework of the BCS model of superconductivity. New materials have brought to light novel forms of superconductivity. Many cases are now known which fall outside the orthodox BCS model, ranging from the high temperature superconductors, to various organic and d- and f- metal compounds. The article presents key concepts from this intense area of research and touches on the equally puzzling behaviour of many of these materials above their superconducting transition temperature.


Assuntos
Condutividade Elétrica , Anisotropia , Cristalografia , Elétrons , Hélio/química , Íons , Magnetismo , Modelos Estatísticos , Modelos Teóricos , Pressão , Eletricidade Estática , Temperatura
7.
J Phys Condens Matter ; 22(5): 052201, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21386332

RESUMO

We investigate the evolution of the electrical resistivity of BaFe(2)As(2) single crystals with pressure. The samples used were from the same batch, grown using a self-flux method, and showed properties that were highly reproducible. Samples were pressurized using three different pressure media: pentane-isopentane (in a piston-cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces the spin density wave order and favours the appearance of superconductivity, which is similar to what is seen in SrFe(2)As(2).

8.
Phys Rev Lett ; 101(2): 026401, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18764202

RESUMO

The d-electron low temperature magnet NbFe2 is poised near the threshold of magnetism at ambient pressure, and can be tuned across the associated quantum critical point by adjusting the precise stoichiometry within the Nb1-yFe2+y homogeneity range. In a nearly critical single crystal (y= -0.01), we observe a T3/2 power-law dependence of the resistivity rho on temperature T and a logarithmic temperature dependence of the Sommerfeld coefficient gamma=C/T of the specific heat capacity C over nearly 2 orders of magnitude in temperature, extending down to 0.1 K.

9.
Phys Rev Lett ; 96(4): 047008, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486879

RESUMO

In the archetypal strongly correlated electron superconductor CeCu2Si2 and its Ge-substituted alloys CeCu2(Si1-xGex)2 two quantum phase transitions--one magnetic and one of so far unknown origin-can be crossed as a function of pressure. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (rho) power-law exponent alpha. At the lower critical point (at pcl, 1

10.
Science ; 302(5653): 2104-7, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14684816

RESUMO

We report the presence of two disconnected superconducting domes in the pressure-temperature phase diagram of partially germanium-substituted CeCu2Si2. The lower density superconducting dome lies on the threshold of antiferromagnetic order, indicating magnetically mediated pairing, whereas the higher density superconducting regime straddles a weakly first-order volume collapse, suggesting a pairing interaction based on spatially extended density fluctuations. Two distinct pairing mechanisms thus appear to operate in the single, wide, superconducting range of stoichiometric CeCu2Si2, both of which might apply more generally to other classes of correlated electron systems.

11.
Phys Rev Lett ; 85(3): 626-9, 2000 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-10991356

RESUMO

We report the first observation of non-Fermi-liquid (NFL) effects in a clean Yb compound at ambient pressure and zero magnetic field. The electrical resistivity and the specific-heat coefficient of high-quality single crystals of YbRh(2)Si(2) present a linear and a logarithmic temperature dependence, respectively, in more than a decade in temperature. We ascribe this NFL behavior to the presence of (presumably) quasi-2D antiferromagnetic spin fluctuations related to a very weak magnetic phase transition at T(N) approximately 65 mK. Application of hydrostatic pressure induces anomalies in the electrical resistivity, indicating the stabilization of magnetic order.

12.
Phys Rev Lett ; 87(24): 247003, 2001 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-11736532

RESUMO

The clathrate compound Ba 6Ge25 and its relatives consist of a rigid germanium skeleton, into which barium or other metal atoms are coordinated. These guest atoms can "rattle" freely at high temperatures, but in Ba 6Ge25 some of them lock randomly into split positions below T(S) approximately 200 K. The resulting bad metal undergoes a BCS-like superconducting transition at T(c) approximately 0.24 K. T(c) increases more than 16-fold, as T(S) is suppressed by hydrostatic pressure p, but changes only slightly with p from T(c) approximately 0.84 K in the undistorted sister compound Ba 4Na2Ge25. The large enhancement of T(c) in Ba 6Ge25 may be attributed mainly to the pressure tuning of strong disorder caused by the random displacement of Ba atoms at T(S).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA