Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Kidney Int ; 83(5): 811-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23447069

RESUMO

A dietary potassium load induces a rapid kaliuresis and natriuresis, which may occur even before plasma potassium and aldosterone (aldo) levels increase. Here we sought to gain insight into underlying molecular mechanisms contributing to this response. After gastric gavage of 2% potassium, the plasma potassium concentrations rose rapidly (0.25 h), followed by a significant rise of plasma aldo (0.5 h) in mice. Enhanced urinary potassium and sodium excretion was detectable as early as spot urines could be collected (about 0.5 h). The functional changes were accompanied by a rapid and sustained (0.25-6 h) dephosphorylation of the NaCl cotransporter (NCC) and a late (6 h) upregulation of proteolytically activated epithelial sodium channels. The rapid effects on NCC were independent from the coadministered anion. NCC dephosphorylation was also aldo-independent, as indicated by experiments in aldo-deficient mice. The observed urinary sodium loss relates to NCC, as it was markedly diminished in NCC-deficient mice. Thus, downregulation of NCC likely explains the natriuretic effect of an acute oral potassium load in mice. This may improve renal potassium excretion by increasing the amount of intraluminal sodium that can be exchanged against potassium in the aldo-sensitive distal nephron.


Assuntos
Rim/metabolismo , Potássio na Dieta/sangue , Receptores de Droga/metabolismo , Simportadores/metabolismo , Administração Oral , Aldosterona/sangue , Animais , Transporte Biológico , Citocromo P-450 CYP11B2/deficiência , Citocromo P-450 CYP11B2/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Natriurese , Fosforilação , Potássio na Dieta/administração & dosagem , Potássio na Dieta/urina , Receptores de Droga/deficiência , Receptores de Droga/genética , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/deficiência , Simportadores/genética , Fatores de Tempo , Equilíbrio Hidroeletrolítico
2.
J Biol Chem ; 286(11): 9079-96, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21177871

RESUMO

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating ß-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Doença Crônica , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Sistemas do Segundo Mensageiro/efeitos dos fármacos
3.
Mol Membr Biol ; 26(5): 279-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19757321

RESUMO

The endothelin B (ET(B)) receptor can undergo a proteolytic cleavage resulting in an unglycosylated N-terminally truncated receptor. We investigated whether ET(B) receptor processing affects caveolar localisation and mitogenic signalling. Distinct subcellular localisations of ET(B) receptor constructs and epidermal growth factor (EGF) receptor ligands were analysed performing detergent-free caveolae preparations and total internal reflection fluorescence microscopy. ET(B) receptor-induced transactivation of the EGF receptor and its downstream signalling was investigated performing shedding assays and ERK1/2 phosphorylation analyses. In COS7 cells, the N-terminally truncated but not the full-length or glycosylation-deficient ET(B) receptor localised to caveolae. In caveolae-free HEK293 cells, only ET(B) receptor constructs fused to caveolin-2 localised to membrane microdomains. A caveolar accumulation of the ET(B) receptor disfavoured EGF receptor ligand shedding. Nonetheless, the activation of ERK1/2 was efficient and long-lasting. In HEK293 cells, the shedding activity was also impaired by N-terminal truncation. The subsequent ERK1/2 phosphorylation was long-lasting only for the full-length ET(B) receptor. We conclude that the ET(B) receptor localisation might depend on the presence of caveolae within the cell investigated. The data further suggest that caveolar enrichment of ET(B) receptors does not facilitate the release of EGF receptor ligands. However, independent of their localisation, ET(B) receptors are able to induce an ERK1/2 phosphorylation.


Assuntos
Microdomínios da Membrana/metabolismo , Receptor de Endotelina B/metabolismo , Animais , Células COS , Cavéolas/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Linhagem Celular , Chlorocebus aethiops , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Receptor de Endotelina B/genética , Transdução de Sinais
4.
Arterioscler Thromb Vasc Biol ; 26(6): 1288-96, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16601236

RESUMO

OBJECTIVE: The extracellular N terminus of the endothelin B (ETB) receptor is cleaved by a metalloprotease in an agonist-dependent manner, but the physiological role of this N-terminal proteolysis is not known. In this study, we aimed to determine the functional role of the ETB receptor and of its N-terminal cleavage in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: VSMCs expressing either the full-length ETB receptor or an N-terminally truncated ETB receptor (corresponding to the N-terminally cleaved receptor) were analyzed for ligand-induced mitogen-activated protein kinase activation and expression of contractile proteins. In VSMCs expressing the full-length ETB receptor, IRL1620 (an ETB-selective agonist) induced a biphasic extracellular signal-regulated kinase 1/2 (ERK1/2) activation and increased expression of contractile proteins (smooth muscle myosin-1 [SM-1]/SM-2, SM22alpha, and alpha-actin). Interestingly, the second phase of ERK1/2 activation required metalloprotease activity, epidermal growth factor (EGF) receptor transactivation, and predominantly activation of Gi proteins. In contrast, in VSMCs expressing N-terminally truncated ETB receptors, IRL1620 did not elicit EGF transactivation and failed to increase contractile protein expression. CONCLUSIONS: This study is the first to show that stimulation of full-length ETB receptors promotes expression of contractile proteins and may thus participate in the differentiation of VSMCs.


Assuntos
Proteínas Contráteis/metabolismo , Receptores ErbB/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Peptídeo Hidrolases/metabolismo , Receptor de Endotelina B/química , Receptor de Endotelina B/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Endotelinas/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Músculo Liso Vascular/citologia , Mutação , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/genética , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
5.
Sci Rep ; 7(1): 3740, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623260

RESUMO

Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay.


Assuntos
Endotelina-1/metabolismo , Fluorescência , Receptor de Endotelina B/metabolismo , Transdução de Sinais , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Endotelina-1/química , Humanos , Receptor de Endotelina B/química
6.
Hypertension ; 64(1): 178-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799612

RESUMO

Excessive renal efferent sympathetic nerve activity contributes to hypertension in many circumstances. Although both hemodynamic and tubular effects likely participate, most evidence supports a major role for α-adrenergic receptors in mediating the direct epithelial stimulation of sodium retention. Recently, it was reported, however, that norepinephrine activates the thiazide-sensitive NaCl cotransporter (NCC) by stimulating ß-adrenergic receptors. Here, we confirmed this effect and developed an acute adrenergic stimulation model to study the signaling cascade. The results show that norepinephrine increases the abundance of phosphorylated NCC rapidly (161% increase), an effect largely dependent on ß-adrenergic receptors. This effect is not mediated by the activation of angiotensin II receptors. We used immunodissected mouse distal convoluted tubule to show that distal convoluted tubule cells are especially enriched for ß1-adrenergic receptors, and that the effects of adrenergic stimulation can occur ex vivo (79% increase), suggesting they are direct. Because the 2 protein kinases, STE20p-related proline- and alanine-rich kinase (encoded by STK39) and oxidative stress-response kinase 1, phosphorylate and activate NCC, we examined their roles in norepinephrine effects. Surprisingly, norepinephrine did not affect STE20p-related proline- and alanine-rich kinase abundance or its localization in the distal convoluted tubule; instead, we observed a striking activation of oxidative stress-response kinase 1. We confirmed that STE20p-related proline- and alanine-rich kinase is not required for NCC activation, using STK39 knockout mice. Together, the data provide strong support for a signaling system involving ß1-receptors in the distal convoluted tubule that activates NCC, at least in part via oxidative stress-response kinase 1. The results have implications about device- and drug-based treatment of hypertension.


Assuntos
Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Túbulos Renais Distais/efeitos dos fármacos , Camundongos , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
7.
Int Rev Cell Mol Biol ; 283: 235-330, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20801421

RESUMO

The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Doença , Humanos , Transdução de Sinais
8.
J Biol Chem ; 283(38): 25871-8, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18650426

RESUMO

The expression of contractile proteins in vascular smooth muscle cells is controlled by still poorly defined mechanisms. A thrombin-inducible expression of smooth muscle-specific alpha-actin and myosin heavy chain requires transactivation of the epidermal growth factor (EGF) receptor and a biphasic activation of ERK1/2. Here we demonstrate that the sustained second phase of ERK1/2 phosphorylation requires de novo RNA and protein synthesis. Depolymerization of the actin cytoskeleton by cytochalasin D or disruption of transit between the endoplasmic reticulum and the Golgi apparatus by brefeldin A prevented the second phase of ERK1/2 phosphorylation. We thus conclude that synthesis and trafficking of a plasma membrane-resident protein may be critical intermediates. Analysis of the expression of protease-activated receptor 1, heparin-binding EGF (HB-EGF), and the EGF receptor revealed that pro-HB-EGF is significantly up-regulated upon thrombin stimulation. The kinetic of HB-EGF expression closely matched that of the second phase of ERK1/2 phosphorylation. Because inhibition of matrix metalloproteases or of the EGF receptor strongly attenuated the late phase of ERK1/2 phosphorylation, the second phase of ERK1/2 activation is primarily relayed by shedding of EGF receptor ligands. The small interfering RNA-mediated knockdown of HB-EGF expression confirmed an important role of HB-EGF expression in triggering the second phase of ERK1/2 activation. Confocal imaging of a yellow fluorescent protein-tagged HB-EGF construct demonstrates the rapid plasma membrane integration of the newly synthesized protein. These data imply that the hormonal control of contractile protein expression relies on an intermediate HB-EGF expression to sustain the signaling strength within the Ras/Raf/MEK/ERK cascade.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/enzimologia , Trombina/metabolismo , Animais , Animais Recém-Nascidos , Aorta/citologia , Proteínas de Bactérias/metabolismo , Células Cultivadas , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Fosforilação , RNA/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA