Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Nature ; 604(7907): 740-748, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444273

RESUMO

All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs1) such as meningeal and perivascular macrophages2-7-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma2,8-10. It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors11-15. However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood. Here we show, using fate-mapping systems, single-cell profiling and cell-specific mutants, that only meningeal macrophages and microglia share a common prenatal progenitor. By contrast, perivascular macrophages originate from perinatal meningeal macrophages only after birth in an integrin-dependent manner. The establishment of perivascular macrophages critically requires the presence of arterial vascular smooth muscle cells. Together, our data reveal a precisely timed process in distinct anatomical niches for the establishment of macrophage subsets in the CNS.


Assuntos
Linhagem da Célula , Sistema Nervoso Central , Macrófagos , Sistema Nervoso Central/imunologia , Feminino , Humanos , Imunidade Inata , Macrófagos/citologia , Microglia , Gravidez , Saco Vitelino
2.
Eur J Neurosci ; 59(7): 1519-1535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185886

RESUMO

Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.


Assuntos
Alcoolismo , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Proteômica , Consumo de Bebidas Alcoólicas
4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834747

RESUMO

Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Consumo de Bebidas Alcoólicas , Metilação de DNA , Etanol , Fator 2 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
5.
Addict Biol ; 27(2): e13115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796591

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing disorder, characterized by escalating alcohol drinking and loss of control, with very limited available treatments. We recently reported that the expression of fibroblast growth factor 2 (Fgf2) is increased in the striatum of rodents following long-term excessive alcohol drinking and that the systemic or intra-striatal administration of recombinant FGF2 increases alcohol consumption. Here, we set out to determine whether the endogenous FGF2 plays a role in alcohol drinking and reward, by testing the behavioural phenotype of Fgf2 knockout mice. We found that Fgf2 deficiency resulted in decreased alcohol consumption when tested in two-bottle choice procedures with various alcohol concentrations. Importantly, these effects were specific for alcohol, as a natural reward (sucrose) or water consumption was not affected by Fgf2 deficiency. In addition, Fgf2 knockout mice failed to show alcohol-conditioned place preference (CPP) but showed normal fear conditioning, suggesting that deletion of the growth factor reduces alcohol's rewarding properties. Finally, Fgf2 knockout mice took longer to recover from the loss of righting reflex and showed higher blood alcohol concentrations when challenged with an intoxicating alcohol dose, suggesting that their ethanol metabolism might be affected. Together, our results show that the endogenous FGF2 plays a critical role in alcohol drinking and reward and indicate that FGF2 is a positive regulator of alcohol-drinking behaviours. Our findings suggest that FGF2 is a potential biomarker for problem alcohol drinking and is a potential target for pharmacotherapy development for AUD.


Assuntos
Etanol , Fator 2 de Crescimento de Fibroblastos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Corpo Estriado , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos , Recompensa
6.
Eur J Neurosci ; 54(2): 4475-4496, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942412

RESUMO

The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.


Assuntos
Neuralgia , Vias Aferentes , Animais , Humanos , Modelos Teóricos
7.
Int J Mol Sci ; 22(1)2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396566

RESUMO

Fibroblast growth factor 2 (FGF-2), ubiquitously expressed in humans and mice, is functionally involved in cell growth, migration and maturation in vitro and in vivo. Based on the same mRNA, an 18-kilo Dalton (kDa) FGF-2 isoform named FGF-2 low molecular weight (FGF-2LMW) isoform is translated in humans and rodents. Additionally, two larger isoforms weighing 21 and 22 kDa also exist, summarized as the FGF-2 high molecular weight (FGF-2HMW) isoform. Meanwhile, the human FGF-2HMW comprises a 22, 23, 24 and 34 kDa protein. Independent studies verified a specific intracellular localization, mode of action and tissue-specific spatiotemporal expression of the FGF-2 isoforms, increasing the complexity of their physiological and pathophysiological roles. In order to analyze their spectrum of effects, FGF-2LMW knock out (ko) and FGF-2HMWko mice have been generated, as well as mice specifically overexpressing either FGF-2LMW or FGF-2HMW. So far, the development and functionality of the cardiovascular system, bone formation and regeneration as well as their impact on the central nervous system including disease models of neurodegeneration, have been examined. This review provides a summary of the studies characterizing the in vivo effects modulated by the FGF-2 isoforms and, thus, offers a comprehensive overview of its actions in the aforementioned organ systems.


Assuntos
Osso e Ossos/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Animais , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
J Cell Physiol ; 234(5): 7395-7410, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370540

RESUMO

We have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS. The aim of the present study was a thorough characterization of FGF-2 and other growth factors and signaling effectors in vivo in the SOD1G93A mouse model. We observed tissue-specific opposing gene regulation of FGF-2 and overall dysregulation of other growth factors, which in the gastrocnemius muscle was associated with reduced downstream extracellular-signal-regulated kinases (ERK) and protein kinase B (AKT) activation. To further investigate whether the effects of FGF-2 on motor neuron death are mediated by glial cells, astrocytes lacking FGF-2 were cocultured together with mutant SOD1 G93A motor neurons. FGF-2 had an impact on motor neuron maturation indicating that astrocytic FGF-2 affects motor neurons at a developmental stage. Moreover, neuronal gene expression patterns showed FGF-2- and SOD1 G93A -dependent changes in ciliary neurotrophic factor, glial-cell-line-derived neurotrophic factor, and ERK2, implying a potential involvement in ALS pathogenesis before the onset of clinical symptoms.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Astrócitos/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurônios Motores/enzimologia , Músculo Esquelético/enzimologia , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/patologia , Mutação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/genética
9.
Eur J Neurosci ; 50(6): 3028-3045, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30883949

RESUMO

We have previously shown that total knockout of fibroblast growth factor-2 (FGF-2) results in prolonged survival and improved motor performance in superoxide dismutase 1 (SOD1G93A ) mutant mice, the most widely used animal model of the fatal adult onset motor neuron disease amyotrophic lateral sclerosis (ALS). Moreover, we found differential expression of growth factors in SOD1G93A mice, with distinct regulation patterns of FGF-2 in spinal cord and muscle tissue. Within the present study we aimed to characterize FGF-2-isoform specific effects on survival, motor performance as well as gene expression patterns predominantly in muscle tissue by generating double mutant SOD1G93A FGF-2 high molecular weight- and SOD1G93A FGF-2 low molecular weight-knockout mice. While isoform specific depletion was not beneficial regarding survival or motor performance of double mutant mice, we found isoform-dependent differential gene expression of epidermal growth factor (EGF) in the muscle of SOD1G93A FGF-2 low molecular weight knockout mice compared to single mutant SOD1G93A mice. This significant downregulation of EGF in the muscle tissue of double mutant SOD1G93A FGF-2 low molecular weight knockout mice implies that FGF-2 low molecular weight knockout (or the presence of the FGF-2 high molecular weight isoform) selectively impacts EGF gene expression in ALS muscle tissue.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fator 2 de Crescimento de Fibroblastos/genética , Longevidade/genética , Isoformas de Proteínas/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Isoformas de Proteínas/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Cell Tissue Res ; 378(1): 1-14, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30989398

RESUMO

Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and alpha-synucleinopathy. We mimic the disease pathology with overexpression of either the human α-syn wildtype (α-syn-WT) or E46K mutant form (α-syn-E46K) in DA neurons of the SNpc in adult rats using AAV2/DJ as a viral vector for the first time. Transduction efficiency was compared to an equal virus titer expressing the green fluorescent protein (GFP). Motor skills of all animals were evaluated in the cylinder and amphetamine-induced rotation test over a total time period of 12 weeks. Additionally, stereological quantification of DA cells and striatal fiber density measurements were performed every 4 weeks after injection. Rats overexpressing α-syn-WT showed a progressive loss of DA neurons with 40% reduction after 12 weeks accompanied by a greater loss of striatal DA fibers. In contrast, α-syn-E46K led to this reduction after 4 weeks without further progress. Insoluble α-syn positive cytoplasmic inclusions were observed in both groups within DA neurons of the SNpc and VTA. In addition, both α-syn groups developed a characteristic worsening of the rotational behavior over time. However, only the α-syn-WT group reached statistically significant different values in the cylinder test. Summarizing these effects, we established a motor symptom animal model of PD by using AAV2/DJ in the brain for the first time. Thereby, overexpressing of α-syn-E46K mimicked a rather pre-symptomatic stage of the disease, while the α-syn-WT overexpressing animals imitated an early symptomatic stage of PD.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Dependovirus , Feminino , Vetores Genéticos , Parvovirinae/genética , Ratos , Ratos Sprague-Dawley
11.
J Cell Physiol ; 233(12): 9640-9651, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30054911

RESUMO

In previous studies, we described the presence of fibroblast growth factor 2 (FGF-2) and its receptors (FGFRs) in human testis and sperm, which are involved in spermatogenesis and in motility regulation. The aim of the present study was to analyze the role of FGF-2 in the maintenance of sperm physiology using FGF-2 knockout (KO) mice. Our results showed that in wild-type (WT) animals, FGF-2 is expressed in germ cells of the seminiferous epithelium, in epithelial cells of the epididymis, and in the flagellum and acrosomal region of epididymal sperm. In the FGF-2 KO mice, we found alterations in spermatogenesis kinetics, higher numbers of spermatids per testis, and enhanced daily sperm production compared with the WT males. No difference in the percentage of sperm motility was detected, but a significant increase in sperm concentration and in sperm head abnormalities was observed in FGF-2 KO animals. Sperm from KO mice depicted reduced phosphorylation on tyrosine residues (a phenomenon that was associated with sperm capacitation) and increased acrosomal loss after incubation under capacitating conditions. However, the FGF-2 KO males displayed no apparent fertility defects, since their mating with WT females showed no differences in the time to delivery, litter size, and pup weight in comparison with WT males. Overall, our findings suggest that FGF-2 exerts a role in mammalian spermatogenesis and that the lack of FGF-2 leads to dysregulated sperm production and altered sperm morphology and function. FGF-2-deficient mice constitute a model for the study of the complex mechanisms underlying mammalian spermatogenesis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/deficiência , Espermatogênese , Espermatozoides/fisiologia , Animais , Peso Corporal , Epididimo/metabolismo , Feminino , Fertilidade , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Espermatozoides/ultraestrutura , Testículo/metabolismo
12.
BMC Neurosci ; 18(1): 53, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720074

RESUMO

BACKGROUND: Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45 days delayed reconstruction of critical length 15 mm rat sciatic nerve defects in either healthy Wistar rats or diabetic Goto-Kakizaki rats; the latter resembling type 2 diabetes. In short and long-term investigations, we comprehensively analyzed the performance of one-chambered hollow CNGs (hCNGs) and two-chambered CNGs (CFeCNGs) in which a chitosan film has been longitudinally introduced. Additionally, we investigated in vitro the immunomodulatory effect provided by the chitosan film. RESULTS: Both types of nerve guides, i.e. hCNGs and CFeCNGs, enabled moderate morphological and functional nerve regeneration after reconstruction that was delayed for 45 days. These positive findings were detectable in generally healthy as well as in diabetic Goto-Kakizaki rats (for the latter only in short-term studies). The regenerative outcome did not reach the degree as recently demonstrated after immediate reconstruction using hCNGs and CFeCNGs. CFeCNG-treatment, however, enabled tissue regrowth in all animals (hCNGs: only in 80% of animals). CFeCNGs did further support with an increased vascularization of the regenerated tissue and an enhanced regrowth of motor axons. One mechanism by which the CFeCNGs potentially support successful regeneration is an immunomodulatory effect induced by the chitosan film itself. Our in vitro results suggest that the pro-regenerative effect of chitosan is related to the differentiation of chitosan-adherent monocytes into pro-healing M2 macrophages. CONCLUSIONS: No considerable differences appear for the delayed nerve regeneration process related to healthy and diabetic conditions. Currently available chitosan nerve grafts do not support delayed nerve regeneration to the same extent as they do after immediate nerve reconstruction. The immunomodulatory characteristics of the biomaterial may, however, be crucial for their regeneration supportive effects.


Assuntos
Quitosana/administração & dosagem , Diabetes Mellitus Tipo 2/fisiopatologia , Fatores Imunológicos/administração & dosagem , Regeneração Nervosa , Fármacos Neuroprotetores/administração & dosagem , Alicerces Teciduais , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Células de Schwann/fisiologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia
13.
J Neurochem ; 137(5): 756-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26896818

RESUMO

Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor α-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co-application of soluble α-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ-activation. Co-application of the co-receptor α-Klotho leads to an Akt-activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Células Cultivadas , Fator de Crescimento de Fibroblastos 23 , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/fisiologia
14.
Cell Mol Life Sci ; 72(9): 1651-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25552245

RESUMO

Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.


Assuntos
Núcleo Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Sistema Nervoso/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Fator 2 de Crescimento de Fibroblastos/análise , Homeostase , Humanos , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Transdução de Sinais
15.
Infect Immun ; 83(1): 417-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385800

RESUMO

The recent finding that high numbers of strict anaerobes are present in the respiratory tract of cystic fibrosis (CF) patients has drawn attention to the pathogenic contribution of the CF microbiome to airway disease. In this study, we investigated the specific interactions of the most dominant bacterial CF pathogen, Pseudomonas aeruginosa, with the anaerobic bacterium Veillonella parvula, which has been recovered at comparable cell numbers from the respiratory tract of CF patients. In addition to growth competition experiments, transcriptional profiling, and analyses of biofilm formation by in vitro studies, we used our recently established in vivo murine tumor model to investigate mutual influences of the two pathogens during a biofilm-associated infection process. We found that P. aeruginosa and V. parvula colonized distinct niches within the tumor. Interestingly, significantly higher cell numbers of P. aeruginosa could be recovered from the tumor tissue when mice were coinfected with both bacterial species than when mice were monoinfected with P. aeruginosa. Concordantly, the results of in vivo transcriptional profiling implied that the presence of V. parvula supports P. aeruginosa growth at the site of infection in the host, and the higher P. aeruginosa load correlated with clinical deterioration of the host. Although many challenges must be overcome to dissect the specific interactions of coinfecting bacteria during an infection process, our findings exemplarily demonstrate that the complex interrelations between coinfecting microorganisms and the immune responses determine clinical outcome to a much greater extent than previously anticipated.


Assuntos
Interações Microbianas , Neoplasias/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Veillonella/patogenicidade , Animais , Carga Bacteriana , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C , Neoplasias/complicações
16.
Cell Mol Life Sci ; 70(14): 2555-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23334184

RESUMO

Reduced levels of survival of motoneuron (SMN) protein lead to spinal muscular atrophy, but it is still unknown how SMN protects motoneurons in the spinal cord against degeneration. In the nucleus, SMN is associated with two types of nuclear bodies denoted as gems and Cajal bodies (CBs). The 23 kDa isoform of fibroblast growth factor-2 (FGF-2(23)) is a nuclear protein that binds to SMN and destabilizes the SMN-Gemin2 complex. In the present study, we show that FGF-2(23) depletes SMN from CBs without affecting their general structure. FRAP analysis of SMN-EGFP in CBs demonstrated that the majority of SMN in CBs remained mobile and allowed quantification of fast, slow and immobile nuclear SMN populations. The potential for SMN release was confirmed by in vivo photoconversion of SMN-Dendra2, indicating that CBs concentrate immobile SMN that could have a specialized function in CBs. FGF-2(23) accelerated SMN release from CBs, accompanied by a conversion of immobile SMN into a mobile population. Furthermore, FGF-2(23) caused snRNP accumulation in CBs. We propose a model in which Cajal bodies store immobile SMN that can be mobilized by its nuclear interaction partner FGF-2(23), leading to U4 snRNP accumulation in CBs, indicating a role for immobile SMN in tri-snRNP assembly.


Assuntos
Corpos Enovelados/metabolismo , Proteínas do Complexo SMN/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HEK293 , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Nucleares/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Isoformas de Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo
17.
J Biol Chem ; 287(24): 19827-40, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22514272

RESUMO

Experiments in mice deficient for Nurr1 or expressing the dominant-negative FGF receptor (FGFR) identified orphan nuclear receptor Nurr1 and FGFR1 as essential factors in development of mesencephalic dopaminergic (mDA) neurons. FGFR1 affects brain cell development by two distinct mechanisms. Activation of cell surface FGFR1 by secreted FGFs stimulates proliferation of neural progenitor cells, whereas direct integrative nuclear FGFR1 signaling (INFS) is associated with an exit from the cell cycle and neuronal differentiation. Both Nurr1 and INFS activate expression of neuronal genes, such as tyrosine hydroxylase (TH), which is the rate-limiting enzyme in dopamine synthesis. Here, we show that nuclear FGFR1 and Nurr1 are expressed in the nuclei of developing TH-positive cells in the embryonic ventral midbrain. Both nuclear receptors were effectively co-immunoprecipitated from the ventral midbrain of FGF-2-deficient embryonic mice, which previously showed an increase of mDA neurons and enhanced nuclear FGFR1 accumulation. Immunoprecipitation and co-localization experiments showed the presence of Nurr1 and FGFR1 in common nuclear protein complexes. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrated the Nurr1-mediated shift of nuclear FGFR1-EGFP mobility toward a transcriptionally active population and that both Nurr1 and FGFR1 bind to a common region in the TH gene promoter. Furthermore, nuclear FGFR1 or its 23-kDa FGF-2 ligand (FGF-2(23)) enhances Nurr1-dependent activation of the TH gene promoter. Transcriptional cooperation of FGFR1 with Nurr1 was confirmed on isolated Nurr1-binding elements. The proposed INFS/Nurr1 nuclear partnership provides a novel mechanism for TH gene regulation in mDA neurons and a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.


Assuntos
Núcleo Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Núcleo Celular/genética , Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Tirosina 3-Mono-Oxigenase/biossíntese
18.
Neurobiol Dis ; 59: 230-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23938762

RESUMO

Dopamine (DA) depletion in the nigrostriatal system leads to basal ganglia dysfunction both in Parkinson's disease (PD) and in 6-hydroxy dopamine (6-OHDA)-lesioned rats with neuronal hyperactivity in the subthalamic nucleus (STN), i.e. increased firing rate and burst activity, together with enhanced beta oscillatory activity. Moreover, intrastriatal transplantation of DA neurons has been shown to functionally re-innervate the host striatum and restore DA input. However, the effects of those transplanted cells on the STN are not well characterized. Therefore, we transplanted cells, derived from the ventral mesencephalon of E12 rat embryos, intrastriatally in the unilateral 6-OHDA-lesioned rat model of PD. We combined behavioral and histological findings with electrophysiological extracellular recordings in the STN, as well as qRT-PCR analyses of dopaminergic, GABAergic, and glutamatergic transporter and receptor genes in the striatum and the STN. Transplanted animals displayed improved rotational behavior after amphetamine injection by 50% in rats with small grafts (586±109 SEM dopamine cells), or even overcompensation by 116% in rats with large grafts (3486±548 SEM dopamine cells). Electrophysiological measurements revealed, that in rats with large grafts burst activity was not affected, while STN neuronal firing rate, as well as beta oscillatory activity was alleviated, whereas small grafts had less impact. Interestingly, both behavioral and electrophysiological measures were dependent on the number of surviving tyrosine hydroxylase positive cells. Although grafted rats displayed restored expression of the GABA synthesizing enzymes Gad65 and Gad67 in the striatum compared to naive rats, the grafts induced a decreased mRNA expression of dopamine receptor Drd2, glutamate receptors AMPA3, NMDA2A, and NMDA2B, and glutamate transporter Eaat3. Interestingly, the NMDA receptor subunit 2B and glutamate transporter Eaat3 were also less expressed in the STN of grafted animals compared to naive rats. In summary, DA grafts restore functional deficits and cause partial improvement of subthalamic neuronal activity. Incomplete recovery, however, may be due to decreased receptor gene expression induced by DA grafts in the striatum and in the STN.


Assuntos
Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/patologia , Potenciais de Ação/fisiologia , Adrenérgicos/toxicidade , Animais , Células Cultivadas , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Mesencéfalo/citologia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Células-Tronco/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Hum Mol Genet ; 20(24): 4865-78, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21920940

RESUMO

Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.


Assuntos
Atrofia Muscular Espinal/metabolismo , Profilinas/metabolismo , Transdução de Sinais , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Cones de Crescimento/metabolismo , Cones de Crescimento/patologia , Humanos , Camundongos , Modelos Biológicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto/genética , Neuritos/metabolismo , Fosforilação , Ligação Proteica , Ratos , Proteína 1 de Sobrevivência do Neurônio Motor/genética
20.
Drug Alcohol Depend ; 248: 109920, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224676

RESUMO

Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.


Assuntos
Dopamina , Fator 2 de Crescimento de Fibroblastos , Ratos , Masculino , Animais , Dopamina/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Etanol/farmacologia , Etanol/metabolismo , Consumo de Bebidas Alcoólicas/genética , Recidiva , Área Tegmentar Ventral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA