Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurochem ; 158(2): 246-261, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33389746

RESUMO

Although cyclooxygenase (COX) role in cancer angiogenesis has been studied, little is known about its role in brain angioplasticity. In the present study, we chronically infused mice with ketorolac, a non-specific COX inhibitor that does not cross the blood-brain barrier (BBB), under normoxia or 50% isobaric hypoxia (10% O2 by volume). Ketorolac increased mortality rate under hypoxia in a dose-dependent manner. Using in vivo multiphoton microscopy, we demonstrated that chronic COX inhibition completely attenuated brain angiogenic response to hypoxia. Alterations in a number of angiogenic factors that were reported to be COX-dependent in other models were assayed at 24-hr and 10-day hypoxia. Intriguingly, hypoxia-inducible factor 1 was unaffected under COX inhibition, and vascular endothelial growth factor receptor type 2 (VEGFR2) and C-X-C chemokine receptor type 4 (CXCR4) were significantly but slightly decreased. However, a number of mitogen-activated protein kinases (MAPKs) were significantly reduced upon COX inhibition. We conclude that additional, angiogenic factor-independent mechanism might contribute to COX role in brain angioplasticity, probably including mitogenic COX effect on endothelium. Our data indicate that COX activity is critical for systemic adaptation to chronic hypoxia, and BBB COX is essential for hypoxia-induced brain angioplasticity. These data also indicate a potential risk for using COX inhibitors under hypoxia conditions in clinics. Further studies are required to elucidate a complete mechanism for brain long-term angiogenesis regulation through COX activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Hipóxia/tratamento farmacológico , Hipóxia/mortalidade , Cetorolaco/farmacologia , Animais , Doença Crônica , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/farmacologia , Prostaglandinas/metabolismo , Análise de Sobrevida , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
FASEB J ; 28(1): 256-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24029533

RESUMO

Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular , Humanos , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mutagênese Sítio-Dirigida
3.
Microorganisms ; 11(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764200

RESUMO

The broad range of clinical manifestations and life-threatening infections caused by the Gram-positive bacterium, Streptococcus pyogenes or Group A Streptococcus (GAS), remains a significant concern to public health, with a subset of individuals developing neurological complications. Here, we examined the concurrent neuroimmune effects of subcutaneous GAS infections in an HLA-Class II (HLA) transgenic mouse model of subcutaneous GAS infection. To investigate changes in the skin-brain axis, HLA-DQ8 (DQA1*0301/DQB1*0302) mice (DQ8) were randomly divided into three groups: uninfected controls (No Inf), GAS infected and untreated (No Tx), and GAS infected with a resolution by clindamycin (CLN) treatment (CLN Tx) (10 mg/kg/5 days) and were monitored for 16 days post-infection. While the skin GAS burden was significantly reduced by CLN, the cortical and hippocampal GAS burden in the male DQ8 mice was not significantly reduced with CLN. Immunoreactivity to anti-GAS antibody revealed the presence of GAS bacteria in the vicinity of the neuronal nucleus in the neocortex of both No Tx and CLN Tx male DQ8 mice. GAS infection-mediated cortical cytokine changes were modest; however, compared to No Inf or No Tx groups, a significant increase in IL-2, IL-13, IL-22, and IL-10 levels was observed in CLN Tx females despite the lack of GAS burden. Western blot analysis of cortical and hippocampal homogenates showed significantly higher ionized calcium-binding adaptor-1 (Iba-1, microglia marker) protein levels in No Tx females and males and CLN Tx males compared to the No Inf group. Immunohistochemical analysis showed that Iba-1 immunoreactivity in the hippocampal CA3 and CA1 subregions was significantly higher in the CLN Tx males compared to the No Tx group. Our data support the possibility that the subcutaneous GAS infection communicates to the brain and is characterized by intraneuronal GAS sequestration, brain cytokine changes, Iba-1 protein levels, and concurrent CA3 and CA1 subregion-specific microgliosis, even without bacteremia.

4.
Curr Res Physiol ; 6: 100106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107792

RESUMO

The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.

5.
Virus Res ; 327: 199060, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746339

RESUMO

Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Lactente , Adulto , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Células Epiteliais , Epitélio , Inflamação
6.
Exp Cell Res ; 315(7): 1247-59, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19210988

RESUMO

Gravin, a multivalent A-kinase anchoring protein (AKAP), localizes to the cell periphery in several cell types and is postulated to target PKA and other binding partners to the plasma membrane. An N-terminal myristoylation sequence and three regions rich in basic amino acids are proposed to mediate this localization. Reports indicating that phorbol ester affects the distribution of SSeCKS, the rat orthologue of gravin, further suggest that PKC may also regulate the subcellular distribution of gravin, which in turn may affect PKA distribution. In this study, quantitative confocal microscopy of cells expressing full-length and mutant gravin-EGFP constructs lacking the proposed targeting domains revealed that either the N-myristoylation site or the polybasic regions were sufficient to target gravin to the cell periphery. Moreover, phorbol ester treatment induced redistribution of gravin-EGFP from the cell periphery to a juxtanuclear vesicular compartment, but this required the presence of the N-myristoylation site. Confocal microscopy further revealed that not only did gravin-EGFP target a PKA RII-ECFP construct to the cell periphery, but PKC activation resulted in redistribution of the gravin and PKA constructs to the same subcellular site. It is postulated that this dynamic response by gravin to PKC activity may mediate PKC dependent control of PKA activity.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ativação Enzimática , Humanos , Proteína Quinase C/metabolismo , Proteínas Recombinantes de Fusão/genética , Frações Subcelulares/metabolismo
7.
Mol Pharmacol ; 75(4): 855-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176359

RESUMO

Heat shock proteins represent an emerging model for the coordinated, multistep regulation of apoptotic signaling events. Although certain aspects of the biochemistry associated with heat shock protein cytoprotective effects are known, little information is found describing the regulation of heat shock protein responses to harmful stimuli. During screening for noncanonical beta adrenergic receptor signaling pathways in human urothelial cells, using mass spectroscopy techniques, an agonist-dependent interaction with beta-arrestin and the 27-kDa heat shock protein was observed in vitro. Formation of this beta-arrestin/Hsp27 complex in response to the selective beta adrenergic receptor agonist isoproterenol, was subsequently confirmed in situ by immunofluorescent colocalization studies. Radioligand binding techniques characterized a homogeneous population of the beta2 adrenergic receptor subtype expressed on these cells. Using terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunoblot analysis and quantitation of caspase-3 activity to detect apoptosis, preincubation of these cells with isoproterenol was found to be sufficient for protection against programmed cell death initiated by staurosporine. RNA interference strategies confirmed the necessity for Hsp27 as well as both beta-arrestin isoforms to confer this cytoprotective consequence of beta adrenergic receptor activation in this cell model. As a result, these studies represent the first description of an agonist-dependent relationship between a small heat shock protein and beta-arrestin to form a previously unknown antiapoptotic "signalosome."


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/metabolismo , Arrestinas/fisiologia , Citoproteção/fisiologia , Proteínas de Choque Térmico HSP27/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/fisiologia , Arrestinas/genética , Linhagem Celular Transformada , Citoproteção/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/fisiologia , Interferência de RNA , Urotélio/citologia , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , beta-Arrestinas
8.
Anat Rec (Hoboken) ; 300(3): 560-576, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27813325

RESUMO

We previously demonstrated that OVE transgenic diabetic mice are susceptible to chronic complications of diabetic nephropathy (DN) including substantial oxidative damage to the renal glomerular filtration barrier (GFB). Importantly, the damage was mitigated significantly by overexpression of the powerful antioxidant, metallothionein (MT) in podocytes. To test our hypothesis that GFB damage in OVE mice is the result of endothelial oxidative insult, a new JTMT transgenic mouse was designed in which MT overexpression was targeted specifically to endothelial cells. At 60 days of age, JTMT mice were crossed with age-matched OVE diabetic mice to produce bi-transgenic OVE-JTMT diabetic progeny that carried the endothelial targeted JTMT transgene. Renal tissues from the OVE-JTMT progeny were examined by unbiased TEM stereometry for possible GFB damage and other alterations from chronic complications of DN. In 150 day-old OVE-JTMT mice, blood glucose and HbA1c were indistinguishable from age-matched OVE mice. However, endothelial-specific MT overexpression in OVE-JTMT mice mitigated several DN complications including significantly increased non-fenestrated glomerular endothelial area, and elimination of glomerular basement membrane thickening. Significant renoprotection was also observed outside of endothelial cells, including reduced podocyte effacement, and increased podocyte and total glomerular cell densities. Moreover, when compared to OVE diabetic animals, OVE-JTMT mice showed significant mitigation of nephromegaly, glomerular hypertrophy, increased mesangial cell numbers and increased total glomerular cell numbers. These results confirm the importance of oxidative stress to glomerular damage in DN, and show the central role of endothelial cell injury to the pathogenesis of chronic complications of diabetes. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:560-576, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Metalotioneína/metabolismo , Podócitos/metabolismo , Animais , Glicemia/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Glomérulos Renais/patologia , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Podócitos/patologia
9.
Cell Signal ; 28(4): 294-306, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26772752

RESUMO

Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream ß-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may represent an important paradigm for the regulation of cellular signaling networks.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ancoragem à Quinase A/genética , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos
10.
Cell Signal ; 27(3): 498-509, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578862

RESUMO

The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays. In fibroblasts expressing NHE1 alanine mutants for either Rock (T653A) or ribosomal S6 kinase (Rsk; S703A) we show that each site is partially responsible for the LPA-induced increase in transport activity while NHE1 phosphorylation by either Rock or Rsk at their respective site is sufficient for LPA stimulated stress fiber formation and migration. Furthermore, mutation of either T653 or S703 leads to a higher basal pH level and a significantly higher proliferation rate. Our results identify the direct phosphorylation of NHE1 by Rock and suggest that both RhoA and Ras pathways mediate NHE1-dependent ion transport and migration in fibroblasts.


Assuntos
Citoesqueleto/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Cricetinae , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Alinhamento de Sequência , Trocadores de Sódio-Hidrogênio/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína rhoA de Ligação ao GTP/genética
11.
Brain Res ; 926(1-2): 126-36, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11814414

RESUMO

SSeCKS (src suppressed C kinase substrate) is a protein kinase C substrate that may play a role in tumor suppression. Recently described in fibroblasts, testes and mesangial cells, SSeCKS may have a function in the control of cell signaling and cytoskeletal arrangement. To investigate the distribution of SSeCKS throughout the nervous system, representative sections of brain, spinal cord and dorsal root ganglia were processed using immunofluorescence. Labeling of central axonal collaterals of primary sensory neurons was observed in the dorsal horn at all spinal levels. SSeCKS-immunoreactivity was also observed in the cerebellum, medulla and sensory ganglia (including trigeminal ganglia). The pattern and distribution of anti-SSeCKS labeling in dorsal root ganglia and the dorsal horn of the spinal cord was similar to that observed for other markers of small primary sensory neurons. Therefore, the coexistence of SSeCKS with substance P, CGRP and acid phosphatase was examined in sections of sensory ganglia, spinal cord and medulla using double immunofluorescent labeling for SSeCKS and substance P/CGRP or sequential SSeCKS immunofluorescence and acid phosphatase/fluoride-resistant acid phosphatase enzyme histochemistry. A small portion of the SSeCKS-labeled cell bodies appeared to represent a subpopulation of substance P (4.8%) and CGRP (4.7%) containing neurons, while 45.0% contained fluoride-resistant acid phosphatase reactivity. These results indicate that SSeCKS has a restricted distribution within the nervous system and that expression of this protein may reflect the specific signaling requirements of a distinct population of nociceptive sensory neurons.


Assuntos
Proteínas de Ciclo Celular , Mitógenos/análise , Neurônios Aferentes/química , Proteínas de Ancoragem à Quinase A , Fosfatase Ácida/análise , Animais , Anticorpos , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Imunofluorescência , Gânglios Espinais/citologia , Masculino , Mitógenos/imunologia , Nociceptores/fisiologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Substância P/análise , Substância P/imunologia
12.
Cell Signal ; 25(11): 2125-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23838009

RESUMO

A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteína Quinase C/genética , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ionóforos de Cálcio/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ionomicina/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Tapsigargina/farmacologia
13.
J Morphol ; 209(3): 265-284, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29865557

RESUMO

Embryos of the poeciliid Heterandria formosa develop to term in the ovarian follicle in which they establish a placental association with the follicle wall (follicular placenta) and undergo a 3,900% increase in embryonic dry weight. This study does not confirm the belief that the embryonic component of the follicular placenta is formed only by the surfaces of the pericardial and yolk sacs; early in development the entire embryonic surface functions in absorption. The pericardial sac expands to form a hood-like structure that covers the head of the embryo and together with the yolk sac is extensively vascularized by a portal plexus derived from the vitelline circulation. The hood-like pericardial sac is considered to be a pericardial amnion-serosa. Scanning and transmission electron microscopy reveal that during the early and middle phases of development (Tavolga's stages 10-18 for Xiphophorus maculatus) the entire embryo is covered by a bilaminar epithelium whose apical surface is characterized by numerous, elongate microvilli and coated pits and vesicles. Electron-lucent vesicles in the apical cytoplasm appear to be endosomes while a heterogeneous group of dense-staining vesicles display many features characteristic of lysosomes. As in the larvae of other teleosts, cells resembling chloride cells are also present in the surface epithelium. Endothelial cells of the portal plexus lie directly beneath the surface epithelium of the pericardial and yolk sacs and possess numerous transcytotic vesicles. The microvillous surface epithelium becomes restricted to the pericardial and yolk sacs late in development when elsewhere on the embryo the non-absorptive epidermis differentiates. We postulate that before the definitive epidermis differentiates, the entire embryonic surface constitutes the embryonic component of the follicular placenta. The absorptive surface epithelium appears to be the principle embryonic adaptation for maternal-embryonic nutrient uptake in H. formosa, suggesting that a change in the normal differentiation of the surface epithelium was of primary importance to the acquisition of matrotrophy in this species. In other species of viviparous poeciliid fishes in which there is little or no transfer of maternal nutrients, the embryonic surface epithelium is of the non-absorptive type.

14.
J Morphol ; 220(2): 167-184, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-29865389

RESUMO

Embryos of the viviparous poeciliid fish, Heterandria formosa, develop to term in the ovarian follicle where they undergo a 3,900% increase in embryonic dry weight. Maternal-embryonic nutrient transfer occurs across a follicular placenta that is formed by close apposition of the embryonic surface (i.e., the entire body surface during early gestation and the pericardial amnionserosa during mid-late gestation) to the follicular epithelium. To complement our recent study of the embryonic component of the follicular placenta, we now describe the development and fine structure of the maternal component of the follicular placenta. Transmission electron microscopy reveals that the ultrastructure of the egg envelope and the follicular epithelium that invests vitellogenic oocytes is typical of that described for teleosts. The egg envelope is a dense matrix, penetrated by microvilli of the oocyte. The follicular epithelium consists of a single layer of cuboidal cells that lack apical microvilli, basal surface specializations, and junctional complexes. Follicle cells investing the youngest embryonic stage examined (Tavolga's and Rugh's stage 5-7 for Xiphophorus maculatus) also lack apical microvilli and basal specializations, but possess junctional complexes. In contrast, follicle cells that invest embryos at stage 10 and later display ultrastructural features characteristic of transporting epithelial cells. Apical microvilli and surface invaginations are present. The basal surface is extensively folded. Apical and basal coated pits are present. The cytoplasm contains a rough endoplasmic reticulum, Golgi complexes, and dense staining vesicles that appear to be lysosomes. The presence of numerous apically located electron-lucent vesicles that appear to be derived from the apical surface further suggests that these follicle cells may absorb and process follicular fluid. The egg envelope, which remains intact throughout gestation and lacks perforations, becomes progressively thinner and less dense as gestation proceeds. We postulate that these ultrastructural features, which are not present in the follicles of the lecithotrophic poeciliid, Poecilia reticulata, are specializations for maternal-embryonic nutrient transfer and that the egg envelope, follicular epithelium, and underlying capillary network form the maternal component of the follicular placenta. © 1994 Wiley-Liss, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA