Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2403034121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954547

RESUMO

Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.


Assuntos
Proteínas de Bactérias , Nanopartículas , Dióxido de Silício , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Nanopartículas/química , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Microtúbulos/metabolismo , Multimerização Proteica , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 121(18): e2316408121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657047

RESUMO

Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Dobramento de Proteína , Dicroísmo Circular , Estrutura Secundária de Proteína , Humanos , Transferência Ressonante de Energia de Fluorescência , Temperatura , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 121(15): e2321668121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557180

RESUMO

The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied.

4.
Proc Natl Acad Sci U S A ; 121(22): e2319094121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768341

RESUMO

Protein-protein and protein-water hydrogen bonding interactions play essential roles in the way a protein passes through the transition state during folding or unfolding, but the large number of these interactions in molecular dynamics (MD) simulations makes them difficult to analyze. Here, we introduce a state space representation and associated "rarity" measure to identify and quantify transition state passage (transit) events. Applying this representation to a long MD simulation trajectory that captured multiple folding and unfolding events of the GTT WW domain, a small protein often used as a model for the folding process, we identified three transition categories: Highway (faster), Meander (slower), and Ambiguous (intermediate). We developed data sonification and visualization tools to analyze hydrogen bond dynamics before, during, and after these transition events. By means of these tools, we were able to identify characteristic hydrogen bonding patterns associated with "Highway" versus "Meander" versus "Ambiguous" transitions and to design algorithms that can identify these same folding pathways and critical protein-water interactions directly from the data. Highly cooperative hydrogen bonding can either slow down or speed up transit. Furthermore, an analysis of protein-water hydrogen bond dynamics at the surface of WW domain shows an increase in hydrogen bond lifetime from folded to unfolded conformations with Ambiguous transitions as an outlier. In summary, hydrogen bond dynamics provide a direct window into the heterogeneity of transits, which can vary widely in duration (by a factor of 10) due to a complex energy landscape.


Assuntos
Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Água/química , Domínios WW , Conformação Proteica , Algoritmos
5.
Proc Natl Acad Sci U S A ; 120(9): e2221690120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821585

RESUMO

Energy flow in molecules, like the dynamics of other many-dimensional finite systems, involves quantum transport across a dense network of near-resonant states. For molecules in their electronic ground state, the network is ordinarily provided by anharmonic vibrational Fermi resonances. Surface crossing between different electronic states provides another route to chaotic motion and energy redistribution. We show that nonadiabatic coupling between electronic energy surfaces facilitates vibrational energy flow and, conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state mixing. A generalization of the Logan-Wolynes theory of quantum energy flow in many-dimensional Fermi resonance systems to the two-surface case gives a phase diagram describing the boundary between localized quantum dynamics and global energy flow. We explore these predictions and test them using a model inspired by the problem of electronic excitation energy transfer in the photosynthetic reaction center. Using an explicit numerical solution of the time-dependent Schrödinger equation for this ten-dimensional model, we find quite good agreement with the expectations from the approximate analytical theory.

6.
Proc Natl Acad Sci U S A ; 119(39): e2202779119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122213

RESUMO

Translocation of proteins is correlated with structural fluctuations that access conformational states higher in free energy than the folded state. We use electric fields at the solid-state nanopore to control the relative free energy and occupancy of different protein conformational states at the single-molecule level. The change in occupancy of different protein conformations as a function of electric field gives rise to shifts in the measured distributions of ionic current blockades and residence times. We probe the statistics of the ionic current blockades and residence times for three mutants of the [Formula: see text]-repressor family in order to determine the number of accessible conformational states of each mutant and evaluate the ruggedness of their free energy landscapes. Translocation becomes faster at higher electric fields when additional flexible conformations are available for threading through the pore. At the same time, folding rates are not correlated with ease of translocation; a slow-folding mutant with a low-lying intermediate state translocates faster than a faster-folding two-state mutant. Such behavior allows us to distinguish among protein mutants by selecting for the degree of current blockade and residence time at the pore. Based on these findings, we present a simple free energy model that explains the complementary relationship between folding equilibrium constants and translocation rates.


Assuntos
Nanoporos , Proteínas , Fenômenos Eletromagnéticos , Mutação , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Termodinâmica
7.
Biomacromolecules ; 25(2): 1282-1290, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251876

RESUMO

Studies of proteins from one organism in another organism's cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro.


Assuntos
Proteínas de Bactérias , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/química , Proteínas de Bactérias/química , Microtúbulos/química
8.
PLoS Comput Biol ; 19(10): e1011566, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871114

RESUMO

Quantitative ethology requires an accurate estimation of an organism's postural dynamics in three dimensions plus time. Technological progress over the last decade has made animal pose estimation in challenging scenarios possible with unprecedented detail. Here, we present (i) a fast automated method to record and track the pose of individual larval zebrafish in a 3-D environment, applicable when accurate human labeling is not possible; (ii) a rich annotated dataset of 3-D larval poses for ethologists and the general zebrafish and machine learning community; and (iii) a technique to generate realistic, annotated larval images in different behavioral contexts. Using a three-camera system calibrated with refraction correction, we record diverse larval swims under free swimming conditions and in response to acoustic and optical stimuli. We then employ a convolutional neural network to estimate 3-D larval poses from video images. The network is trained against a set of synthetic larval images rendered using a 3-D physical model of larvae. This 3-D model samples from a distribution of realistic larval poses that we estimate a priori using a template-based pose estimation of a small number of swim bouts. Our network model, trained without any human annotation, performs larval pose estimation three orders of magnitude faster and with accuracy comparable to the template-based approach, capturing detailed kinematics of 3-D larval swims. It also applies accurately to other datasets collected under different imaging conditions and containing behavioral contexts not included in our training.


Assuntos
Redes Neurais de Computação , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Larva , Natação/fisiologia , Imageamento Tridimensional/métodos
9.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168695

RESUMO

Fluorescent emitters are quenched near the surfaces of metals via rapid energy transfer to the metal, via surface plasmons, waveguide modes, and absorption. Commonly, this quenching is reduced by introducing a polymeric or dielectric spacer but requires large distances, at least a fraction of the wavelength, between the metal and chromophore. Using the classical theory for a dipole above a metal/dielectric substrate, we investigate the fluorescent yield for emitters above a wide range of metals and spacers. For metals with low loss and low plasma frequencies, a high index spacer is shown to be advantageous for obtaining higher fluorescent yield in an "island of emission" at finely tuned spacer thickness just 20-30 nm from the metal surface. For such metal-dielectric combinations, fluorophores can be placed surprisingly close to the metal surface while remaining significantly emissive.

10.
Nucleic Acids Res ; 50(14): 8193-8206, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876068

RESUMO

The RNA recognition motif (RRM) occurs widely in RNA-binding proteins, but does not always by itself support full binding. For example, it is known that binding of SL1 RNA to the protein U1-70K in the U1 spliceosomal particle is reduced when a region flanking the RRM is truncated. How the RRM flanking regions that together with the RRM make up an 'extended RRM' (eRRM) contribute to complex stability and structural organization is unknown. We study the U1-70K eRRM bound to SL1 RNA by thermal dissociation and laser temperature jump kinetics; long-time molecular dynamics simulations interpret the experiments with atomistic resolution. Truncation of the helix flanking the RRM on its N-terminal side, 'N-helix,' strongly reduces overall binding, which is further weakened under higher salt and temperature conditions. Truncating the disordered region flanking the RRM on the C-terminal side, 'C-IDR', affects the local binding site. Surprisingly, all-atom simulations show that protein truncation enhances base stacking interactions in the binding site and leaves the overall number of hydrogen bonds intact. Instead, the flanking regions of the eRRM act in a distributed fashion via collective interactions with the RNA when external stresses such as temperature or high salt mimicking osmotic imbalance are applied.


Assuntos
Motivo de Reconhecimento de RNA , Ribonucleoproteína Nuclear Pequena U1 , Spliceossomos , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465620

RESUMO

The disassembly of a viral capsid leading to the release of its genetic material into the host cell is a fundamental step in viral infection. In hepatitis B virus (HBV), the capsid consists of identical protein monomers that dimerize and then arrange themselves into pentamers or hexamers on the capsid surface. By applying atomistic molecular dynamics simulation to an entire solvated HBV capsid subjected to a uniform mechanical stress protocol, we monitor the capsid-disassembly process and analyze the process down to the level of individual amino acids in 20 independent simulation replicas. The strain of an isotropic external force, combined with structural fluctuations, causes structurally heterogeneous cracks to appear in the HBV capsid. Analysis of the monomer-monomer interfaces reveals that, in contrast to the expectation from purely mechanical considerations, the cracks mainly occur within hexameric sites, whereas pentameric sites remain largely intact. Only a small subset of the capsid protein monomers, different in each simulation, are engaged in each instance of disassembly. We identify specific residues whose interactions are most readily lost during disassembly; R127, I139, Y132, N136, A137, and V149 are among the hot spots at the interfaces between dimers that lie within hexamers, leading to disassembly. The majority of these hot-spot residues are conserved by evolution, hinting to their importance for disassembly by avoiding overstabilization of capsids.


Assuntos
Capsídeo/metabolismo , Vírus da Hepatite B/fisiologia , Montagem de Vírus , Biopolímeros/química , Capsídeo/química , Genes Virais , Vírus da Hepatite B/genética , Simulação de Dinâmica Molecular , Estrutura Molecular
12.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836601

RESUMO

Time- and space-resolved excited states at the individual nanoparticle level provide fundamental insights into heterogeneous energy, electron, and heat flow dynamics. Here, we optically excite carbon dots to image electron-phonon dynamics within single dots and nanoscale thermal transport between two dots. We use a scanning tunneling microscope tip as a detector of the optically excited state, via optical blocking of electron tunneling, to record movies of carrier dynamics in the 0.1-500-ps time range. The excited-state electron density migrates from the bulk to molecular-scale (∼1 nm2) surface defects, followed by heterogeneous relaxation of individual dots to either long-lived fluorescent states or back to the ground state. We also image the coupling of optical phonons in individual carbon dots with conduction electrons in gold as an ultrafast energy transfer mechanism between two nearby dots. Although individual dots are highly heterogeneous, their averaged dynamics is consistent with previous bulk optical spectroscopy and nanoscale heat transfer studies, revealing the different mechanisms that contribute to the bulk average.


Assuntos
Carbono/química , Nanopartículas/química , Imagem Individual de Molécula , Elétrons , Transferência de Energia , Fluorescência , Ouro/química , Microscopia de Tunelamento , Modelos Químicos , Fônons
13.
Biophys J ; 122(7): 1414-1422, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36916005

RESUMO

Osmolytes are ubiquitous in the cell and play an important role in controlling protein stability under stress. The natural osmolyte trimethylamine N-oxide (TMAO) is used by marine animals to counteract the effect of pressure denaturation at large depths. The molecular mechanism of TMAO stabilization against pressure and urea denaturation has been extensively studied, but unlike the case of other osmolytes, the ability of TMAO to protect proteins from high temperature has not been quantified. To reveal the effect of TMAO on folded and unfolded protein ensembles and the hydration shell at different temperatures, we study a mutant of the well-characterized, fast-folding model protein B (PRB). We carried out, in total, >190 µs all-atom simulations of thermal folding/unfolding of PRB at multiple temperatures and concentrations of TMAO. The simulations show increased thermal stability of PRB in the presence of TMAO. Partly structured, compact ensembles are favored over the unfolded state. TMAO forms two shells near the protein: an outer shell away from the protein surface has altered H-bond lifetimes of water molecules and increases hydration of the protein to help stabilize it; a less-populated inner shell with an opposite TMAO orientation closer to the protein surface binds exclusively to basic side chains. The cooperative cosolute effect of the inner and outer shell TMAO has a small number of TMAO molecules "herding" water molecules into two hydration shells at or near the protein surface. The stabilizing effect of TMAO on our protein saturates at 1 M despite higher TMAO solubility, so there may be little evolutionary pressure for extremophiles to produce higher intracellular TMAO concentrations, if true in general.


Assuntos
Temperatura Alta , Proteínas , Animais , Proteínas/química , Metilaminas/química , Água/química , Ureia
14.
Biomacromolecules ; 24(11): 5245-5254, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906737

RESUMO

Proteins are commonly encapsulated in alginate gels for drug delivery and tissue-engineering applications. However, there is limited knowledge of how encapsulation impacts intrinsic protein properties such as folding stability or unfolding kinetics. Here, we use fast relaxation imaging (FReI) to image protein unfolding in situ in alginate hydrogels after applying a temperature jump. Based on changes in the Förster resonance energy transfer (FRET) response of FRET-labeled phosphoglycerate kinase (PGK), we report the quantitative impact of multiple alginate hydrogel concentrations on protein stability and folding dynamics. The gels stabilize PGK by increasing its melting temperature up to 18.4 °C, and the stabilization follows a nonmonotonic dependence on the alginate density. In situ kinetic measurements also reveal that PGK deviates more from two-state folding behavior in denser gels and that the gel decreases the unfolding rate and accelerates the folding rate of PGK, compared to buffer. Phi-value analysis suggests that the folding transition state of an encapsulated protein is structurally similar to that of folded protein. This work reveals both beneficial and negative impacts of gel encapsulation on protein folding, as well as potential mechanisms contributing to altered stability.


Assuntos
Hidrogéis , Dobramento de Proteína , Estabilidade Proteica , Cinética , Temperatura , Desnaturação Proteica
15.
Biomacromolecules ; 23(10): 4063-4073, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054903

RESUMO

Polymers designed to stabilize proteins exploit direct interactions or crowding, but mechanisms underlying increased stability or reduced aggregation are rarely established. Alginate is widely used to encapsulate proteins for drug delivery and tissue regeneration despite limited knowledge of its impact on protein stability. Here, we present evidence that alginate can both increase protein folding stability and suppress the aggregation of unfolded protein through direct interactions without crowding. We used a fluorescence-based conformational reporter of two proteins, the metabolic protein phosphoglycerate kinase (PGK) and the hPin1 WW domain to monitor protein stability and aggregation as a function of temperature and the weight percent of alginate in solution. Alginate stabilizes PGK by up to 14.5 °C, but stabilization is highly protein-dependent, and the much smaller WW domain is stabilized by only 3.5 °C against thermal denaturation. Stabilization is greatest at low alginate weight percent and decreases at higher alginate concentrations. This trend cannot be explained by crowding, and ionic screening suggests that alginate stabilizes proteins through direct interactions with a significant electrostatic component. Alginate also strongly suppresses aggregation at high temperature by irreversibly associating with unfolded proteins and preventing refolding. Both the beneficial and negative impacts of alginate on protein stability and aggregation have important implications for practical applications.


Assuntos
Alginatos , Fosfoglicerato Quinase , Fosfoglicerato Quinase/química , Polímeros , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica
16.
Proc Natl Acad Sci U S A ; 116(12): 5356-5361, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30837309

RESUMO

As theory and experiment have shown, protein dehydration is a major contributor to protein folding. Dehydration upon folding can be characterized directly by all-atom simulations of fast pressure drops, which create desolvated pockets inside the nascent hydrophobic core. Here, we study pressure-drop refolding of three λ-repressor fragment (λ6-85) mutants computationally and experimentally. The three mutants report on tertiary structure formation via different fluorescent helix-helix contact pairs. All-atom simulations of pressure drops capture refolding and unfolding of all three mutants by a similar mechanism, thus validating the nonperturbative nature of the fluorescent contact probes. Analysis of simulated interprobe distances shows that the α-helix 1-3 pair distance displays a slower characteristic time scale than the 1-2 or 3-2 pair distance. To see whether slow packing of α-helices 1 and 3 is reflected in the rate-limiting folding step, fast pressure-drop relaxation experiments captured refolding on a millisecond time scale. These experiments reveal that refolding monitored by 1-3 contact formation indeed is much slower than when monitored by 1-2 or 3-2 contact formation. Unlike the case of the two-state folder [three-α-helix bundle (α3D)], whose drying and core formation proceed in concert, λ6-85 repeatedly dries and rewets different local tertiary contacts before finally forming a solvent-excluded core, explaining the non-two-state behavior observed during refolding in molecular dynamics simulations. This work demonstrates that proteins can explore desolvated pockets and dry globular states numerous times before reaching the native conformation.


Assuntos
Desidratação/metabolismo , Proteínas/metabolismo , Escherichia coli/metabolismo , Fluorescência , Cinética , Simulação de Dinâmica Molecular , Pressão , Conformação Proteica em alfa-Hélice/fisiologia , Dobramento de Proteína , Solventes/metabolismo
17.
Annu Rev Phys Chem ; 71: 415-433, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312194

RESUMO

At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.

18.
Biomacromolecules ; 22(11): 4470-4478, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606244

RESUMO

The solubility transition at the lower critical solution temperature (LCST, 32 °C) of poly(N-isopropylacrylamide) (PNIPAM) is widely used as a thermal switch to rapidly and reversibly capture and release proteins and cells. It is generally assumed that proteins adsorbed to PNIPAM above the LCST are unaffected by polymer interactions. Here we show that the folding stability of the enzyme phosphoglycerate kinase (PGK) is increased by interactions with end-grafted PNIPAM films above the LCST. We systematically compare two protein mutants with different stabilities. The stabilization mirrors the degree of protein adsorption under grafting conditions studied previously. Maximum stabilization occurs when proteins adsorb to low density, collapsed polymer "mushrooms". In the denser polymer "brush" regime, protein stabilization decreases back to a value indistinguishable from the bulk solution, consistent with low protein adsorption on dense, collapsed brushes. The temperature-dependent kinetics measured by Fast Relaxation Imaging reveals that PNIPAM does not affect the overall folding/unfolding mechanism. Based on the different stabilizations of two mutants and the relaxation kinetics, we hypothesize that the polymer acts mainly by increasing the conformational entropy of the folded protein by interacting with the protein surface and less by crowding the unfolded state of PGK.


Assuntos
Resinas Acrílicas , Polímeros , Cinética , Proteínas
19.
PLoS Comput Biol ; 16(3): e1007717, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32210422

RESUMO

Spatial organization is a characteristic of all cells, achieved in eukaryotic cells by utilizing both membrane-bound and membrane-less organelles. One of the key processes in eukaryotes is RNA splicing, which readies mRNA for translation. This complex and highly dynamical chemical process involves assembly and disassembly of many molecules in multiple cellular compartments and their transport among compartments. Our goal is to model the effect of spatial organization of membrane-less organelles (specifically nuclear speckles) and of organelle heterogeneity on splicing particle biogenesis in mammalian cells. Based on multiple sources of complementary experimental data, we constructed a spatial model of a HeLa cell to capture intracellular crowding effects. We then developed chemical reaction networks to describe the formation of RNA splicing machinery complexes and splicing processes within nuclear speckles (specific type of non-membrane-bound organelles). We incorporated these networks into our spatially-resolved human cell model and performed stochastic simulations for up to 15 minutes of biological time, the longest thus far for a eukaryotic cell. We find that an increase (decrease) in the number of nuclear pore complexes increases (decreases) the number of assembled splicing particles; and that compartmentalization is critical for the yield of correctly-assembled particles. We also show that a slight increase of splicing particle localization into nuclear speckles leads to a disproportionate enhancement of mRNA splicing and a reduction in the noise of generated mRNA. Our model also predicts that the distance between genes and speckles has a considerable effect on the mRNA production rate, with genes located closer to speckles producing mRNA at higher levels, emphasizing the importance of genome organization around speckles. The HeLa cell model, including organelles and sub-compartments, provides a flexible foundation to study other cellular processes that are strongly modulated by spatiotemporal heterogeneity.


Assuntos
Modelos Biológicos , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Spliceossomos , Biologia Computacional , Simulação por Computador , Células HeLa , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Espaço Intracelular/fisiologia , Cinética , RNA Mensageiro/química , Spliceossomos/química , Spliceossomos/metabolismo , Spliceossomos/fisiologia
20.
Chem Rev ; 119(18): 10691-10717, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31356058

RESUMO

In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.


Assuntos
Proteínas/química , Animais , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA