Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628606

RESUMO

Acute ischemic stroke is a critical condition that can result in disability and death. The consequences of this medical condition depend on various factors, including the size of the stroke, affected brain region, treatment onset, and the type of treatment. The primary objective of stroke treatment is to restart ischemic penumbra tissue perfusion and reduce infarct volume by sustaining blood flow. Recent research on the condition's pathological pathways and processes has significantly improved treatment options beyond restoring perfusion. Many studies have concentrated on limiting injury severity via the manipulation of molecular mechanisms of ischemia, particularly in animal research. This article reviews completed and ongoing research on the development of acute ischemic stroke drugs. This study focuses on three main categories of antithrombotic drugs, thrombolytic drugs, and neuroprotective agents. The paper outlines findings from animal and clinical trials and explores the working mechanisms of these drugs.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico
2.
Gynecol Endocrinol ; 29(10): 912-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23862584

RESUMO

The purpose of this study was to examine whether changes in estrogen and progesterone levels observed during normal pregnancy influence blood glutamate levels. One-hundred and sixteen pregnant women were divided into three groups based on gestational age: group 1 included women in their first trimester, group 2 included women in their second trimester, and group 3 included women in their third trimester. A single venous blood sample was collected and analyzed for concentrations of estrogen, progesterone, glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), and glutamate. Concentrations of blood glutamate were significantly lower during the second trimester (p < 0.001) and third trimester (p < 0.001). Blood glutamate levels were inversely correlated with levels of estrogen and progesterone throughout pregnancy (p < 0.001). Levels of GOT and GPT remained stable during the course of pregnancy, apart from a moderate reduction in GPT during the third trimester. Increases in estrogen and progesterone levels during advanced stages of pregnancy were inversely correlated with maternal blood glutamate concentrations. Once a maximal blood glutamate-reducing effect was achieved, any additional estrogen and progesterone had a negligible effect on blood glutamate. This study demonstrates the glutamate-reducing effects of estrogen and progesterone, which is most likely not mediated by a GOT/GPT conversion mechanism.


Assuntos
Estrogênios/sangue , Ácido Glutâmico/sangue , Gravidez/sangue , Progesterona/sangue , Adolescente , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Glicemia/análise , Feminino , Humanos , Primeiro Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/sangue , Adulto Jovem
3.
Metabolites ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629963

RESUMO

Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood-brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.

5.
Brain Res ; 1491: 109-16, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23123210

RESUMO

Despite significant advancements in the understanding of the pathophysiological mechanisms of subarachnoid hemorrhage (SAH), little is known about the emotional consequences. The primary goal of this study was to describe the locomotor and behavioral patterns in rats following both a single-injection and double-injection model of SAH. In 48 rats, SAH was induced by injecting 0.3 ml of autologous arterial blood into the cisterna magnum (single-hemorrhagic model). In 24 of these rats, post-SAH vasospasm was induced by a repeated injection of blood into the cisterna magnum 24h later (double-hemorrhagic model). In 24 additional rats, 0.3 ml of saline was injected into the cisterna magnum (sham group). Neurological performance was assessed at 24, 48 h, 1, 2 and 3 weeks after SAH. Four behavioral tests were performed for 3 weeks after SAH for the duration of 6 consequent days, in the following order: open field test, sucrose preference test, elevated plus maze test and forced swimming test. Following both, a single and double-hemorrhagic models of SAH, rats were found to have significant behavioral abnormalities on the open field test, sucrose preference test, elevated plus maze test, and forced swimming test. A more prominent disability was found in rats that underwent the double-hemorrhagic model of SAH than rats that underwent the single-hemorrhagic model. Both a single and double injection model of rats SAH are associated with significant behavioral disturbances including locomotor abnormalities, depressive behavior and increased anxiety, even as early as 3 weeks after SAH.


Assuntos
Comportamento Animal/fisiologia , Doenças do Sistema Nervoso/patologia , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/psicologia , Animais , Ansiedade/psicologia , Transfusão de Sangue , Cisterna Magna/fisiologia , Interpretação Estatística de Dados , Depressão/psicologia , Comportamento Exploratório/fisiologia , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Locomoção/fisiologia , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Sacarose , Natação/psicologia , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/psicologia
6.
Hepatol Int ; 7(2): 721-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26201806

RESUMO

PURPOSE: Finding an optimal biomarker for the noninvasive evaluation of acute liver injury (ALI) may be of great value in predicting clinical outcomes and investigating potential treatments. We investigated cell-free DNA (CFD) as a potential biomarker to predict carbon tetrachloride-induced ALI in rats. METHODS: Forty-five Sprague-Dawley rats were randomly assigned to three groups. ALI was induced by carbon tetrachloride via a nasogastric tube at 1, 2.5, or 5 ml/kg of a 50 % solution. Fifteen additional rats underwent a sham procedure. Blood samples were drawn at time t which was 0 (baseline), 3, 6, 12, 24, 48, 72, 96, and 120 h for the measurements of CFD, glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), and total bilirubin. Prothrombin time and histology were examined at 24 and 120 h following injection of 5 ml/kg carbon tetrachloride in 18 additional rats and in 10 control rats. RESULTS: CFD levels in rats subjected to carbon tetrachloride-induced ALI were significantly increased in all blood samples starting at 12 h after the induction of ALI (p < 0.001), reaching peak levels at 24 h. Blood GOT, GPT, and total bilirubin were elevated in all blood samples starting at 3 h after the induction of ALI (p < 0.0001), reaching peak levels by 48 h. A positive correlation was demonstrated between CFD levels and GOT (R (2) = 0.92), GPT (R (2) = 0.92), and total bilirubin (R (2) = 0.76). CFD levels correlated with liver damage seen on histological examination, as well as predicted liver damage, at 24 h after ALI. CONCLUSIONS: CFD may be a useful biomarker for the prediction and measurement of ALI. There is no evidence to suggest that CFD is superior to other available noninvasive biomarkers.

7.
Neurotherapeutics ; 9(3): 649-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22711471

RESUMO

Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.


Assuntos
Antioxidantes/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Ácido Oxaloacético/uso terapêutico , Ácido Pirúvico/uso terapêutico , Hemorragia Subaracnóidea/complicações , Animais , Antioxidantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/sangue , Ácido Glutâmico/líquido cefalorraquidiano , Masculino , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Ácido Oxaloacético/sangue , Ácido Pirúvico/sangue , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Hemorragia Subaracnóidea/sangue , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Hemorragia Subaracnóidea/tratamento farmacológico , Fatores de Tempo
8.
Early Hum Dev ; 88(9): 773-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22633534

RESUMO

BACKGROUND: Excess glutamate in the brain is thought to be implicated in the pathophysiology of fetal anoxic brain injury, yet little is known about the mechanisms by which glutamate is regulated in the fetal brain. This study examines whether there are differences between maternal and fetal glutamate concentrations, and whether a correlation between them exists. METHODS: 10 ml of venous blood was extracted from 87 full-term (>37 weeks gestation) pregnant women in active labor. Immediately after delivery of the neonate, 10 ml of blood from the umbilical artery and vein was extracted. Samples were analyzed for levels of glutamate, glutamate-oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT). RESULTS: Fetal blood glutamate concentrations in both the umbilical artery and vein were found to be significantly higher than maternal blood (p<0.001). Similarly, fetal serum GOT levels in the umbilical artery and vein were found to be significantly higher than maternal GOT levels (p<0.001). The difference in GPT levels between maternal and fetal serum was not statistically significant. There was no difference in fetal glutamate, GOT or GPT between the umbilical artery and vein. There was an association observed between glutamate levels in maternal blood and glutamate levels in both venous (R=0.32, p<0.01) and arterial (R=0.33, p<0.05) fetal blood. CONCLUSIONS: This study demonstrated that higher baseline concentrations of blood glutamate are present in fetal blood compared with maternal blood, and this was associated with elevated GOT, but not GPT levels. An association was observed between maternal and fetal blood glutamate levels.


Assuntos
Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Sangue Fetal/química , Ácido Glutâmico/sangue , Adulto , Ensaios Enzimáticos Clínicos , Feminino , Sofrimento Fetal/sangue , Humanos , Recém-Nascido , Masculino , Gravidez
9.
J Neurosurg Anesthesiol ; 24(1): 30-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21979171

RESUMO

BACKGROUND: Isoflurane-anesthetized rats subjected to traumatic brain injury (TBI) show a transient reduction in blood L-glutamate levels. Having previously observed that isoproterenol produces a sustained decrease in blood glutamate levels in naive rats, we investigated the possible effects of nonselective and selective ß1 and ß2 adrenergic agonists and antagonists both on blood glutamate levels and on the neurological outcomes of rats subjected to TBI. METHODS: Rats received either 10 mL/kg of isotonic saline 1 hour after TBI, 50 µg/kg of isoproterenol pretreatment 30 minutes before TBI, 10 mg/kg of propranolol pretreatment 60 minutes before TBI, 10 mg/kg of metoprolol pretreatment 60 minutes before TBI, or 10 mg/kg of butaxamine pretreatment 40 minutes before TBI and 10 minutes before pretreatment with 50 µg/kg isoproterenol or 10 mg/kg of propranolol 60 minutes after TBI. A neurological severity score (NSS) was measured at 1, 24, and 48 hours after TBI. Blood glutamate, blood glucose, mean arterial blood pressure, and heart rate were measured at the time of drug injection, at the time of TBI, 60 minutes after TBI, and 90 minutes after TBI. RESULTS: Blood glutamate levels decreased spontaneously by 60 minutes after TBI in the control group (P<0.05), reverting to baseline levels by 90 minutes after TBI. A pretreatment with either 10 mg/kg of metoprolol 60 minutes before TBI or with 50 µg/kg of isoproterenol 30 minutes before TBI also reduced blood glutamate levels (P<0.05) both at 90 minutes after TBI and improved the NSS measured 24 and 48 hours after TBI in comparison with the control saline-treated group. However, a 10-mg/kg butoxamine pretreatment 40 minutes before TBI and 10 minutes before pretreatment with 50 µg/kg of isoproterenol or 10 mg/kg of propranolol 60 minutes before TBI neither affected blood glutamate levels across time after TBI nor caused any significant change in the NSS measured 24 and 48 hours after TBI in comparison with the control saline-treated group. A strong correlation (r(2)=0.73) was demonstrated between the percent decrease in blood glutamate levels at 90 minutes after TBI and the percent improvement of NSS measured 24 hours after TBI. CONCLUSIONS: The results suggest that the transient blood glutamate reduction seen after TBI is the result of a stress response and of the activation of the sympathetic nervous system through the ß2 adrenergic receptors, causing an increase of the brain-to-blood efflux of glutamate observed with excess brain glutamate levels after a brain insult. This strongly correlates with the neurological improvement observed 24 hours after TBI.


Assuntos
Lesões Encefálicas/sangue , Ácido Glutâmico/sangue , Doenças do Sistema Nervoso/prevenção & controle , Receptores Adrenérgicos beta 2/fisiologia , Agonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Antagonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Antagonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Lesões Encefálicas/complicações , Butoxamina/uso terapêutico , Traumatismos Cranianos Fechados/sangue , Traumatismos Cranianos Fechados/complicações , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Isoproterenol/uso terapêutico , Masculino , Metoprolol/uso terapêutico , Movimento/efeitos dos fármacos , Movimento/fisiologia , Doenças do Sistema Nervoso/etiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
10.
J Neurosurg Anesthesiol ; 23(3): 222-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593692

RESUMO

BACKGROUND: The animal model of stroke that is most frequently used is a rat model of focal brain ischemia caused by middle cerebral artery occlusion (MCAO). Several studies have reported a link between levels of cell-free DNA (CFD) and neurologic outcome in human stroke. The purpose of this study was to assess brain injury and measure CFD levels in 2 models of MCAO in rats, and to determine whether brain injury correlates with CFD. METHODS: A total of 60 rats were used for this study. Twenty rats underwent a sham procedure, 20 rats had MCAO using a monofilament, and 20 rats had MCAO with a silicon-coated filament. Groups were further divided into 2 subgroups. In 1 subgroup of 10 rats, neurologic performance [measured as a neurologic severity score, (NSS)] was measured at 1 and 24 hours after the procedure, and brain edema and infarct volume were determined at 24 hours. In the second subgroup of 10 rats, CFD was measured at 0, 1, 2, 4, 8, 12, and 24 hours and at 2, 3, 4, and 5 days. Neurologic performance (measured as a NSS) was measured at 1 and 24 hours after the procedure. RESULTS: The main finding was a significant increase in CFD levels observed 24 hours after the onset of MCAO. The correlation between the total infarct volume and CFD levels of the 3 groups was R=0.78, P<0.0001. Brain edema and NSS also were strongly correlated with CFD levels at 24 hours after MCAO (R=0.91, P<0.0001 and R=0.73, P<0.0001, respectively). CONCLUSIONS: We found that CFD levels correlate well with the extent of ischemic injury, brain edema, and neurologic outcome in rats 24 hours post-MCAO. We have also shown that CFD correlates well with the expected temporal progression of ischemic injury. These findings place CFD in a unique place as a biomarker for stroke, both experimentally and possibly clinically.


Assuntos
Isquemia Encefálica/sangue , Sistema Livre de Células/metabolismo , DNA/sangue , Acidente Vascular Cerebral/sangue , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Masculino , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley
11.
J Neurosurg Anesthesiol ; 23(4): 323-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21836527

RESUMO

BACKGROUND: Elevated levels of glutamate in brain fluids, in the context of several neurodegenerative conditions, are associated with a worsened neurological outcome. Because there is a clear relationship between brain glutamate levels and glutamate levels in the blood, and an association of the latter with stress, the purpose of this study was to investigate the effects of glucose, insulin, and glucagon on rat blood glutamate levels. METHODS: Rats received either 1 mL/100 g of rat body weight (BW) intravenous isotonic saline (control), 150 mg/1 mL/100 g BW intravenous glucose, 75 mg/1 mL/100 g BW intravenous glutamate, 50 g/100 g BW intraparitoneal glucagon, or 0.2 UI/100 g BW intraparitoneal insulin. Blood samples were subsequently drawn at 0, 30, 60, 90, and 120 minutes for determination of blood glutamate and glucose levels. RESULTS: We observed a significant decrease in blood glutamate levels at 30 minutes after injection of glucose (P<0.05), at 30 and 60 minutes after injection of insulin (P<0.05), and at 90 and 120 minutes after injection of glucagon. Plasma glucose levels were elevated after infusion of glutamate and glucose but were decreased after injection of insulin. CONCLUSIONS: The results of this study demonstrate that glucose, insulin, and glucagon significantly reduce blood glutamate levels. The effect of insulin is immediate and transient, whereas the effect of glucagon is delayed but longer lasting, suggesting that the sensitivity of pancreatic glucagon and insulin-secreting cells to glutamate is dependent on glucose concentration. The results of this study provide insight into blood glutamate homeostasis and may assist in the implementation of new therapies for brain neuroprotection from excess glutamate.


Assuntos
Glicemia/metabolismo , Glucagon/farmacologia , Glucose/farmacologia , Ácido Glutâmico/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Animais , Injeções Intraperitoneais , Injeções Intravenosas , Insulina/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA