Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 25967, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193161

RESUMO

We have synthesized thermodynamically metastable Ca2IrO4 thin-films on YAlO3 (110) substrates by pulsed laser deposition. The epitaxial Ca2IrO4 thin-films are of K2NiF4-type tetragonal structure. Transport and optical spectroscopy measurements indicate that the electronic structure of the Ca2IrO4 thin-films is similar to that of Jeff = 1/2 spin-orbit-coupled Mott insulator Sr2IrO4 and Ba2IrO4, with the exception of an increased gap energy. The gap increase is to be expected in Ca2IrO4 due to its increased octahedral rotation and tilting, which results in enhanced electron-correlation, U/W. Our results suggest that the epitaxial stabilization growth of metastable-phase thin-films can be used effectively for investigating layered iridates and various complex-oxide systems.

2.
Sci Rep ; 6: 23621, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033248

RESUMO

We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns.

3.
Rev Sci Instrum ; 84(4): 043902, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635204

RESUMO

We present a pulsed laser deposition system that can monitor growth by simultaneously using in situ optical spectroscopic ellipsometry (SE) and reflection high-energy electron diffraction (RHEED). The RHEED precisely monitors the number of thin-film layers and surface structure during the deposition, and the SE measures the optical spectra of the samples simultaneously. The thin-film thickness information obtained from RHEED facilitates the SE modeling process, which allows extracting the in situ optical spectra, i.e., the dielectric functions of thin-films during growth. The in situ dielectric functions contain indispensable information about the electronic structure of thin-films. We demonstrate the performance of this system by growing LaMnO(3+δ) (LMO) thin-films on SrTiO3 (001) substrates. By using in situ SE and RHEED simultaneously, we show that real-time thickness and dielectric functions of the LMO thin-films can be effectively extracted. The simultaneous monitoring of both optical SE and RHEED offers important clues to understand the growth mechanism of atomic-scale thin-films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA