Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(13): 19593-19607, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672233

RESUMO

We study an integrated silicon photonic chip, composed of several sub-wavelength ridge waveguides, and immersed in a micro-cell with rubidium vapor. Employing two-photon excitation, including a telecom wavelength, we observe that the waveguide transmission spectrum gets modified when the photonic mode is coupled to rubidium atoms through its evanescent tail. Due to the enhanced electric field in the waveguide cladding, the atomic transition can be saturated at a photon number ≈80 times less than a free-propagating beam case. The non-linearity of the atom-clad Si-waveguide is about 4 orders of magnitude larger than the maximum achievable value in doped Si photonics. The measured spectra corroborate well with a generalized effective susceptibility model that includes the Casimir-Polder potentials, due to the dielectric surface, and the transient interaction between flying atoms and the evanescent waveguide mode. This work paves the way towards a miniaturized, low-power, and integrated hybrid atomic-photonic system compatible with CMOS technologies.

2.
Nano Lett ; 17(9): 5446-5451, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28796522

RESUMO

Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si3N4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si3N4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

3.
ACS Nano ; 13(6): 6891-6898, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184854

RESUMO

Integrated nanophotonics is an emerging field with high potential for quantum technology applications such as quantum sensing or quantum networks. A desired photonics platform is Si3N4 due to low-photon loss and well-established fabrication techniques. However, quantum optics applications are not yet established. Here, we investigate an approach toward Si3N4-based quantum photonics utilizing a crossed waveguide, pump-probe design. The platform enables efficient, on-chip excitation, strong background suppression, and at the same time, efficient coupling to the mode of a high- Q photonic crystal cavity. The freestanding photonic crystal cavities reach high Q-factors up to 47 × 103. To test our platform, we positioned an ensemble of negatively charged nitrogen vacancy centers located in a nanodiamond within the interaction zone of the photonic crystal cavity. We quantify the efficiency of the coupling with the ßλ-factor reaching values as large as 0.71. We further demonstrate on-chip excitation of the quantum emitter with strong suppression (∼20 dB) of the background fluorescence. Our results unfold the potential to utilize negatively charged nitrogen vacancy centers in nanodiamonds and Si3N4 platforms as an efficient, on-chip spin-photon interface in quantum photonics experiments.

4.
Light Sci Appl ; 6(4): e16245, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30167241

RESUMO

The efficient interaction of light with quantum emitters is crucial to most applications in nano and quantum photonics, such as sensing or quantum information processing. Effective excitation and photon extraction are particularly important for the weak signals emitted by a single atom or molecule. Recent works have introduced novel collection strategies, which demonstrate that large efficiencies can be achieved by either planar dielectric antennas combined with high numerical aperture objectives or optical nanostructures that beam emission into a narrow angular distribution. However, the first approach requires the use of elaborate collection optics, while the latter is based on accurate positioning of the quantum emitter near complex nanoscale architectures; hence, sophisticated fabrication and experimental capabilities are needed. Here we present a theoretical and experimental demonstration of a planar optical antenna that beams light emitted by a single molecule, which results in increased collection efficiency at small angles without stringent requirements on the emitter position. The proposed device exhibits broadband performance and is spectrally scalable, and it is simple to fabricate and therefore applies to a wide range of quantum emitters. Our design finds immediate application in spectroscopy, quantum optics and sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA