Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097186

RESUMO

Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.


Assuntos
Actinas , Proteínas de Drosophila , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Animais
2.
iScience ; 26(9): 107681, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37705955

RESUMO

Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA