Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Environ Monit Assess ; 190(5): 283, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29656324

RESUMO

There is an overall lack of data concerning the pollution status of Bosnia Herzegovina, which is confounded by fragmented national environmental management. The present study aimed to provide some initial data for concentrations of priority substances in two major Bosnian Rivers, using two types of passive sampler (PS) as well as by using high volume water sampling (HVWS). Overall, concentrations of most persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and legacy pesticides, were shown to be low. However, around the town of Doboj on the Bosna River, concentrations of polycyclic aromatic hydrocarbons (PAH) breached European standards for several compounds and reached 67 ng L-1 for freely dissolved concentrations and 250 ng L-1 for total concentrations. In general, contamination was lower in the Neretva River compared to the Bosna, although for brominated diphenyl ethers (PBDEs), results suggested an active source of PBDEs at one location based on the ratio of congeners 47 and 99. Direct comparisons between the different sampling techniques used are not straightforward, but similar patterns of PAH contamination were shown by HVWS and PS in the Bosna River. There are both scientific and practical considerations when choosing which type of sampling technique to apply, and this should be decided based on the goals of each individual study.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Bósnia e Herzegóvina , Poluição Ambiental , Éteres Difenil Halogenados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
J Toxicol Environ Health A ; 80(16-18): 1031-1047, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841380

RESUMO

A data register study was performed in order to identify the amounts of hazardous substances in products related to motorized transport in Norway during 2012. The hazardous substances were selected from legislative investigations performed by the European Chemicals Agency (ECHA), European Union (EU), and Norwegian Environment Agency (NEA). Information regarding hazardous substances in 52 selected product categories associated with traffic-related activities was obtained from the Norwegian Product Register administrated by the NEA. Substances present on ECHA list of substances of very high concern (SVHC), NEA national priority list, and priority substances under the EU Water Framework Directive (WFD) were given most attention, with substances from ECHA community rolling action plan (CoRAP) also included. Results showed that selected products contained a diverse range of substances that were classified as hazardous to either human or environmental health. The quantities of hazardous substances in the selected products were 120 tons (SVHC), 280 tons (Norway priority list), and 2,400 tons (WFD). It proved difficult to pinpoint these quantities only to traffic-related operations since product categories included compounds used for other activities. However, data illustrate that large quantities of hazardous substances are employed concurrent with being prioritized for reduction/elimination by national and international authorities. A list of substances with annual use in 2012 >1 ton was prepared to aid a prioritization for further actions such as substitution, phasing out, or environmental monitoring. The list contains substances that are toxic to humans, especially as adverse reproductive/carcinogenic agents, and/or pose a threat to the environment.


Assuntos
Monitoramento Ambiental , Substâncias Perigosas/toxicidade , Meios de Transporte , Poluentes Químicos da Água/toxicidade , Carcinógenos/toxicidade , Saúde Ambiental , União Europeia , Humanos , Noruega , Reprodução/efeitos dos fármacos , Água/química
3.
Environ Sci Technol ; 50(15): 7964-72, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27312518

RESUMO

Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (<5% of total concentrations). When we focused on PAHs bound to PM from tunnel-wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow < 5.5 were found at higher desorbing rates. The addition of detergents did not influence the extractability of lighter PAHs but increased desorption rates for the heavier PAHs, potentially contributing to increases in the toxicity of tunnel-wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental , Material Particulado/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-38771172

RESUMO

Preparing for future environmental pressures requires projections of how relevant risks will change over time. Current regulatory models of environmental risk assessment (ERA) of pollutants such as pharmaceuticals could be improved by considering the influence of global change factors (e.g., population growth) and by presenting uncertainty more transparently. In this article, we present the development of a prototype object-oriented Bayesian network (BN) for the prediction of environmental risk for six high-priority pharmaceuticals across 36 scenarios: current and three future population scenarios, combined with infrastructure scenarios, in three Norwegian counties. We compare the risk, characterized by probability distributions of risk quotients (RQs), across scenarios and pharmaceuticals. Our results suggest that RQs would be greatest in rural counties, due to the lower development of current wastewater treatment facilities, but that these areas consequently have the most potential for risk mitigation. This pattern intensifies under higher population growth scenarios. With this prototype, we developed a hierarchical probabilistic model and demonstrated its potential in forecasting the environmental risk of chemical stressors under plausible demographic and management scenarios, contributing to the further development of BNs for ERA. Integr Environ Assess Manag 2024;00:1-21. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

5.
Environ Toxicol Chem ; 43(1): 182-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750580

RESUMO

Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2-methyl-4-chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) resulted from risk to both plants (35%) and invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182-196. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Inseticidas , Oryza , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Inseticidas/toxicidade , Ecossistema , Teorema de Bayes , Invertebrados , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
6.
Environ Monit Assess ; 185(2): 1671-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22580747

RESUMO

The Stockholm Convention, which aspires to manage persistent organic pollutants (POPs) at the international level, was recently ratified in Bosnia and Herzegovina (BiH). Despite this fact, there is in general a paucity of data regarding the levels of POPs in the environment in BiH. In the present study, screening for POPs was conducted in one of the country's major rivers, the Bosna. A two-pronged approach was applied using passive samplers to detect the freely dissolved and bioavailable concentrations in the water phase and sediment analysis to provide an integrated measure of historical contamination. At several places along the river, the concentrations of polycyclic aromatic hydrocarbons (PAH) were high and exhibited potential for both chronic and acute effects to biota. River water also showed elevated concentrations of PAH, up to 480 ng L(-1) near the city of Doboj, and diagnostic ratios suggested combustion sources for the contamination present in both types of sample. The levels of the other contaminants measured-polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers--were generally low in the water phase. However, PCBs and some OCPs were present in river sediments at levels which breach the international criteria and thus suggest potential for ecological damage. Additionally, the levels of heptachlor breached these criteria in many of the sites investigated. This study presents the first screening data for some of these Stockholm Convention relevant compounds in BiH and reveals both low concentrations of some chemical groups, but significant point sources and historic contamination for others.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Bósnia e Herzegóvina , Monitoramento Ambiental/legislação & jurisprudência , Política Ambiental , Éteres Difenil Halogenados , Hidrocarbonetos Clorados/análise , Compostos Orgânicos/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Suécia , Poluição Química da Água/legislação & jurisprudência , Poluição Química da Água/estatística & dados numéricos
7.
Environ Toxicol Chem ; 42(10): 2253-2270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37341554

RESUMO

Environmental risk assessment (ERA) of pharmaceuticals relies on available measured environmental concentrations, but often such data are sparse. Predicted environmental concentrations (PECs), calculated from sales weights, are an attractive alternative but often cover only prescription sales. We aimed to rank, by environmental risk in Norway, approximately 200 active pharmaceutical ingredients (APIs) over 2016-2019, based on sales PECs. To assess the added value of wholesale and veterinary data, we compared exposure and risk predictions with and without these additional sources. Finally, we aimed to characterize the persistence, mobility, and bioaccumulation of these APIs. We compared our PECs to available Norwegian measurements, then, using public predicted-no-effect concentrations, we calculated risk quotients (RQs) and appended experimental and predicted persistence and bioaccumulation. Our approach overestimated environmental concentrations compared with measurements for 18 of 20 APIs with comparable predictions and measurements. Seventeen APIs had mean RQs >1, indicating potential risk, while the mean RQ was 2.05 and the median 0.001, driven by sex hormones, antibiotics, the antineoplastic abiraterone, and common painkillers. Some high-risk APIs were also potentially persistent or bioaccumulative (e.g., levonorgestrel [RQ = 220] and ciprofloxacin [RQ = 56]), raising the possibility of impacts beyond their RQs. Exposure and risk were also calculated with and without over-the-counter sales, showing that prescriptions explained 70% of PEC magnitude. Likewise, human sales, compared with veterinary, explained 85%. Sales PECs provide an efficient option for ERA, designed to overestimate compared with analytical techniques and potentially held back by limited data availability and an inability to quantify uncertainty but, nevertheless, an ideal initial approach for identification and ranking of risks. Environ Toxicol Chem 2023;42:2253-2270. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

8.
Environ Toxicol Chem ; 42(6): 1337-1345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942385

RESUMO

Bumblebees carry out the complex task of foraging to provide for their colonies. They also conduct pollination, an ecosystem service of high importance to both wild plants and entomophilous crops. Insecticides can alter different aspects of bumblebee foraging behavior, including the motivation to leave the hive, finding the right flowers, handling flowers, and the ability to return to the colony. In the present study, we assessed how the neonicotinoid imidacloprid affects bumblebees' foraging behavior after exposure to four different treatment levels, including field-realistic concentrations (0 [control], 1, 10, and 100 µg/L), through sucrose solution over 9 days. We observed the behavior of several free-flying bumblebees simultaneously foraging on artificial flowers in a flight arena to register the bees' complex behavior postexposure. To conduct a detailed assessment of how insecticides affect bumblebee locomotor behavior, we used video cameras and analyzed the recordings using computer vision. We found that imidacloprid impaired learning and locomotor activity level when the bumblebees foraged on artificial flowers. We also found that imidacloprid exposure reduced sucrose solution intake and storage. By using automated analyses of video recordings of bumblebee behavior, we identified sublethal effects of imidacloprid exposure at field-realistic doses. Specifically, we observed negative impacts on consumption of sucrose solution as well as on learning and locomotor activity level. Our results highlight the need for more multimodal approaches when assessing the sublethal effects of insecticides and plant protection products in general. Environ Toxicol Chem 2023;42:1337-1345. © 2023 SETAC.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Sacarose/toxicidade , Ecossistema , Comportamento Alimentar , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
9.
Tidsskr Nor Laegeforen ; 132(10): 1249-51, 2012 May 29.
Artigo em Norueguês | MEDLINE | ID: mdl-22669389

RESUMO

The pharmaceuticals we humans use to treat illness and disease typically enter the aquatic environment via the sewer network and wastewater treatment works. Understanding the risks posed to the aquatic environment by these chemicals requires an understanding of the concentrations that exist in the environment and whether they are sufficiently high to have adverse effects on aquatic organisms. The main source of pharmaceuticals to wastewater treatment works is pharmaceuticals used by the general population. Only a small contribution is believed to come from hospitals. The predicted environmental concentrations of pharmaceuticals suggest that certain pharmaceuticals may pose a risk to the environment, but measurement of the actual concentrations present in effluents and recipient waters suggest that sophisticated wastewater treatment is effective for significantly reducing effluent concentrations, and that environmental concentrations of pharmaceuticals, in the Oslo Fjord, for example, are generally low. Humans also excrete the metabolites of the pharmaceuticals that they have used and these too may be released into the environment, sometimes in greater concentrations than the parent drug. The occurrence of most pharmaceuticals and their metabolites in the environment poses little acute environmental risk. However, the effects of long-term chronic exposure to these compounds are still poorly understood and the long-terms risks to the environment are still not clear. What is clear is that certain pharmaceuticals pose a greater environmental risk than others, and that where possible this knowledge should be used to inform users of more environmentally friendly alternatives.


Assuntos
Resíduos de Drogas/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Exposição Ambiental/efeitos adversos , Humanos , Noruega , Medição de Risco , Esgotos
10.
Chemosphere ; 300: 134476, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35367489

RESUMO

The recommended test for assessing if a chemical can be biodegraded in the marine environment is performed according to the Organisation for Economic Cooperation and Development Marine biodegradation test guideline (OECD 306). However, this test is known to generate highly variable test results when comparing interlaboratory test results for the same compound. One reason can be the relatively low bacterial content compared to the inoculum used for OECD readily biodegradation tests (OECD 301). Some of the variability in data obtained from OECD 306 tests can also be due to the flexibility on how to store the seawater inoculum before starting a test. Another variable in the seawater inoculum is the source of seawater used by different laboratories, i.e., geographical location and anthropogenic activities at the source. In this study, the effect of aging seawater and the source of seawater (sample time and depth) were investigated to determine differences in the biodegradation of the reference compound aniline. Aging the seawater before starting the test is recommended in OECD 306 to reduce the background levels of organic carbon in the water. However, it also functions to acclimatize the bacterial community from the environmental source temperature to the test temperature (normally 20 °C). Herein, the microbial community was monitored using flowcytometer during the aging process. As expected, the microbial community changed over time. In one experiment, aging significantly improved the biodegradation of aniline, while in two experiments, there was no significant difference in biodegradation. Interestingly however, there was significant variability in the biodegradation of aniline between sampling seasons and depths, even when all experiments were performed in the same lab, by the same operator and seawater obtained from the same source. This highlights the need for a more robust and consistent microbial inoculum source to reduce variability in seawater biodegradation tests.


Assuntos
Organização para a Cooperação e Desenvolvimento Econômico , Poluentes Químicos da Água , Compostos de Anilina/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Água do Mar , Poluentes Químicos da Água/metabolismo
11.
Environ Toxicol Chem ; 41(8): 1838-1850, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678208

RESUMO

Polycyclic aromatic compounds (PACs) and metals are important contaminants in road runoff. Vital mitigation measures against aquatic contamination from road runoff include the use of sedimentation ponds. However, it has been demonstrated that ecosystems in sedimentation ponds might be affected by road runoff. Sediments from six natural ponds and 27 sedimentation ponds were investigated to determine the environmental risk of contaminants. The amount of traffic on the respective roads associated with the sedimentation ponds was correlated with the environmental concentrations. Quantification included seven metals, the 16 US Environmental Protection Agency polycyclic aromatic hydrocarbons, alkylated PACs, dibenzothiophene, benzo[e]pyrene, and perylene. The environmental risk was assessed according to the European Union Water Framework Directive guidelines. Sedimentation ponds had a higher level of contaminants than natural ponds, and environmental risks were dominated by the concentration of PACs. Alkylated PACs contributed to the environmental risk posed by PACs and should be included in future monitoring. Only Cu and Zn were measured at concentrations above the environmental quality standards (EQSs), while 13 PACs exceeded the EQS. Sediment concentrations of Cu, Zn, and most PACs correlated significantly with the amount of traffic. The sources of PACs were determined by source apportionment ratios between PACs. Alkylation and pyrogenic indices showed that sources in natural ponds were of mostly pyrogenic origin, whereas in sedimentation ponds they were predominantly petrogenic. Asphalt was the probable main source of PACs. A hierarchical clustering technique was used to investigate both the environmental risks and the pattern of PACs in the ponds and revealed that a few sedimentation ponds were not protecting the environment as intended because the upper sediment layers had not been regularly dredged. Environ Toxicol Chem 2022;41:1838-1850. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais , Compostos Orgânicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
12.
Open Res Eur ; 2: 71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645327

RESUMO

The regulation and monitoring of pharmaceutical pollution in Europe lag behind that of more prominent groups. However, the repurposing of sales data to predict surface water environmental concentrations is a promising supplement to more commonly used market-based risk assessment and measurement approaches. The Norwegian Institute of Public Health (NIPH) has since the 1980s compiled the Drug Wholesale Statistics database - covering all sales of both human and veterinary pharmaceuticals to retailers, pharmacies, and healthcare providers. To date, most similar works have focused either on a small subset of Active Pharmaceutical Ingredients (APIs) or used only prescription data, often more readily available than wholesale data, but necessarily more limited. By using the NIPH's product wholesale records, with additional information on API concentrations per product from, we have been able to calculate sales weights per year for almost 900 human and veterinary APIs for the period 2016-2019. In this paper, we present our methodology for converting the provided NIPH data from a public health to an ecotoxicological resource. From our derived dataset, we have used an equation to calculate Predicted Environmental Concentration per API for inland surface waters, a key component of environmental risk assessment. We further describe our filtering to remove ecotoxicological-exempt and data deficient APIs. Lastly, we provide a limited comparison between our dataset and similar publicly available datasets for a subset of APIs, as a validation of our approach and a demonstration of the added value of wholesale data. This dataset will provide the best coverage yet of pharmaceutical sales weights for an entire nation. Moreover, our developed routines for processing 2016-2019 data can be expanded to older Norwegian wholesales data (1974-present). Consequently, our work with this dataset can contribute to narrowing the gap between desk-based predictions of exposure from consumption, and empirical but expensive environmental measurement.

13.
Integr Environ Assess Manag ; 18(4): 1072-1087, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34618406

RESUMO

Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk assessment approaches can offer more transparency by using probability distributions for exposure and/or effects to account for variability and uncertainty. In this study, a probabilistic approach using Bayesian network modeling is explored as an alternative to traditional risk calculation. Bayesian networks can serve as meta-models that link information from several sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk assessment. To this end, a Bayesian network has been developed and parameterized for the pesticides azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate versions, to fully probabilistic risk characterization using azoxystrobin as an example. We also demonstrate the seasonal risk calculation for the three pesticides. Integr Environ Assess Manag 2022;18:1072-1087. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Teorema de Bayes , Ecotoxicologia , Praguicidas/toxicidade , Probabilidade , Medição de Risco
14.
J Toxicol Environ Health A ; 74(7-9): 439-54, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21391090

RESUMO

The environmental status of two polluted marine sites in Norway was investigated by a combination of target chemical analysis and effect-directed analysis (EDA). The two selected sites, the Grenland area and Oslo harbor, in addition to two reference sites, were classified according to the Norwegian environmental classification system based upon results of the target chemical analyses. The polluted sites were characterized by high levels of metals, polycyclic aromatic hydrocarbons (PAH), and polychlorinated biphenyls (PCB). High levels of organotin compounds were also detected in Oslo harbor. The aryl hydrocarbon receptor (AhR) agonist activity in extracts of sediments from marine sites close to Oslo, Oslo harbor, and Grenland were investigated using the CALUX (chemical-activated luciferase expression) assay, which showed elevated levels of activity. As expected from the history of dioxin release into the Grenland area, the results were highest in this area. The presence of estrogen receptor (ER) and androgen receptor (AR) antagonists was also detected in the sediment extracts. Following fractionation of the sediment extracts, EDA was used to tentatively identify the AhR agonists. The compounds responsible for AhR agonist activity in samples from Oslo harbor were isolated in fraction 13, and to a lesser extent in fractions 9-11. In Grenland, the main activity was found in the more polar fractions, namely fractions 14-18. The AhR agonists identified in Oslo harbor were mainly PAH, while in the Grenland area the compounds identified were mainly nitrogen/oxygen-containing polyaromatic compounds (N/O-PAC).


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Fracionamento Químico , Metais/toxicidade , Noruega , Compostos Orgânicos de Estanho/análise , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
15.
J Toxicol Environ Health A ; 74(7-9): 605-19, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21391101

RESUMO

In an international collaborative effort, an impact analysis tool is being developed to predict the effect of accidental oil spills on recruitment and production of Atlantic cod (Gadus morhua) in the Barents Sea. The tool consisted of three coupled ecological models that describe (1) plankton biomass dynamics, (2) cod larvae growth, and (3) fish stock dynamics. The discussions from a series of workshops are presented in which variables and parameters of the first two ecological models were listed that may be affected by oil-related compounds. In addition, ecotoxicological algorithms are suggested that may be used to quantify such effects and what the challenges and opportunities are for algorithm parameterization. Based on model exercises described in the literature, survival and individual growth of cod larvae, survival and reproduction of zooplankton, and phytoplankton population growth are denoted as variables and parameters from the ecological models that might be affected in case of an oil spill. Because toxicity databases mostly (67%) contain data for freshwater species in temperate environments, parameterization of the ecotoxicological algorithms describing effects on these endpoints in the subarctic marine environment is not straightforward. Therefore, it is proposed that metadata analyses be used to estimate the sensitivity of subarctic marine species from available databases. To perform such analyses and reduce associated uncertainty and variability, mechanistic models of varying complexity, possibly aided by new experimental data, are proposed. Lastly, examples are given of how seasonality in ecosystems may influence chemical effects, in particular in the subarctic environment. Food availability and length of day were identified as important characteristics as these determine nutritional status and phototoxicity, respectively.


Assuntos
Vazamento de Resíduos Químicos , Monitoramento Ambiental/métodos , Modelos Biológicos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Meio Ambiente , Gadus morhua/crescimento & desenvolvimento , Gadus morhua/metabolismo , Gadus morhua/fisiologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Petróleo/análise , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Dinâmica Populacional , Poluentes Químicos da Água/análise
16.
J Toxicol Environ Health A ; 74(7-9): 582-604, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21391100

RESUMO

The Norwegian water column monitoring program investigates the biological effects of offshore oil and gas activities in Norwegian waters. In three separate surveys in 2006, 2008, and 2009, bioaccumulation and biomarker responses were measured in mussels (Mytilus edulis) and Atlantic cod (Gadus morhua) held in cages at known distances from the produced water (PW) discharge at the Ekofisk oil field. Identical monitoring studies performed in all three years have allowed the biological effects and bioaccumulation data to be compared, and in addition, enabled the potential environmental benefits of a PW treatment system (CTour), implemented in 2008, to be evaluated. The results of the 2009 survey showed that caged animals were exposed to low levels of PW components, with highest tissue concentrations in mussels located closest to the PW discharge. Mussels located approximately 1-2 km away demonstrated only background concentrations of target compounds. Concentrations of polycyclic aromatic hydrocarbons (PAH) and alkyl phenol (AP) metabolites in the bile of caged cod were elevated at stations 200-250 m from the discharge. There was also a signal of exposure relative to discharge for the biomarkers CYP1A in fish and micronuclei in mussels. All other fish and mussel biomarkers showed no significant exposure effects in 2009. The mussel bioaccumulation data in 2009 indicated a lower exposure to the PW effluent than seen previously in 2008 and 2006, resulting in an associated general improvement in the health of the caged mussels. This was due to the reduction in overall discharge of PW components (measured as oil in water) into the area in 2009 compared to previous years as a result of the improved PW treatment system.


Assuntos
Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Gadus morhua/metabolismo , Mytilus edulis/efeitos dos fármacos , Petróleo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Carga Corporal (Radioterapia) , Citocromo P-450 CYP1A1/metabolismo , Proteínas do Ovo/sangue , Feminino , Gadus morhua/sangue , Glutationa Transferase/metabolismo , Fígado/metabolismo , Masculino , Mytilus edulis/metabolismo , Noruega , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/química , Vitelogeninas/sangue , Poluentes Químicos da Água/análise
17.
Integr Environ Assess Manag ; 17(4): 835-851, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33280244

RESUMO

The Nordic countries are in the forefront of international chemical regulation and management by actively developing the domestic policy framework, while simultaneously pushing for more stringent control internationally. Norway, Sweden, and Denmark have been particularly progressive in the regulation of the per- and polyfluoroalkyl substances (PFAS). Restriction proposals have been developed under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and PFAS have been nominated for global restriction under the Stockholm Convention. A key tool in their work has been the product registries (PRs), where all chemicals imported and produced over a certain reporting limit must be registered by the importers and/or producers. In recent years these PRs have been facing opposition, predominantly from the industry. Simultaneously, and in some contrast, several EU countries are mobilizing for measures to control PFAS as a group. We explored the role of PRs in national and international chemical management. By analyzing the Norwegian PFAS data (2009-2017) reported by industry to the government we observed changes in use and temporal trends. A diversification in use and substitutions to alternative PFAS emerged when new policies were developed, representing a challenge for future control and reduction efforts. Instead of loosening up on reporting obligations, as advocated by some industry representatives, our analysis of the PFAS group argues that governments would benefit from a tighter reporting scheme of problematic compound groups. A comprehensive overview of use, production, and import would contribute to more effective control, thereby saving society and the environment from serious damage and tremendous costs. The Nordic PRs will continue to be important supplements to REACH registration and an indispensable tool for future both national and international regulation on PFAS and other hazardous substances. Integr Environ Assess Manag 2021;17:835-851. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Fluorocarbonos , Substâncias Perigosas , Ecotoxicologia , Substâncias Perigosas/toxicidade , Noruega , Sistema de Registros
18.
Sci Total Environ ; 751: 141808, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882565

RESUMO

Sedimentation ponds have been shown to accumulate several groups of contaminants, most importantly polycyclic aromatic compounds (PACs) and metals. But also, other urban organic pollutants have shown to be present, including polybrominated diphenyl ethers (PBDEs), organophosphate compounds (OPCs) and benzothiazoles (BTs). This investigation aimed at determining the occurrence of these four groups of contaminants in sedimentation ponds and determine their transport from water/sediment to organisms. PACs, including alkylated PACs, PBDEs; OPCs and BTs were determined in water, sediment, plants, dragonfly larvae and fish from two sedimentation ponds and one reference site. Fish were analysed for PAC metabolites. Overall, higher concentrations of all four pollutant groups were detected in water and sediment from sedimentation ponds compared to two natural lakes in rural environments (reference sites). The concentration difference was highest in sediments, and >20 higher concentration was measured in sedimentation ponds (3.6-4.4 ng/g ww) compared to reference (0.2 ng/g ww) for sum BDE6. For PACs and PBDEs a clear transport from water/sediment to organisms were observed. Fish were the highest trophic level organism (3.5-5) in our study, and all four pollutant groups were detected in fish. For PBDEs a trophic biomagnification (TMF) was found both in sedimentation ponds and reference, but higher concentrations in all matrices were measured in sedimentation ponds. TMF was not calculated for PACs since they are metabolised by vertebrates, but a transfer from water/sediment to organisms was seen. For BTs and OPCs, no consistent transfer to plants and dragonfly larvae could be seen. One OPC and two BTs were detected in fish, but only in fish from sedimentation ponds. It is therefore concluded that sedimentation ponds are hotspots for urban and traffic related contaminants, of which especially PACs and PBDEs are transferred to organisms living there.

19.
Open Res Eur ; 1: 154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645192

RESUMO

By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Sklodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.

20.
Environ Sci Technol ; 44(24): 9291-7, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21077669

RESUMO

Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) from coal tar pitch polluted sediments was predicted by (1) a generic approach based on organic carbon-water partitioning and Gibbs linear free energy relationship (between K(OW) and K(OC)), and (2) measurements of freely dissolved concentrations of PAHs in the sediment pore water, using passive samplers and solid phase extraction. Results from these predictions were compared with those from in vivo bioaccumulation experiments using Nereis diversicolor (Polychaeta), Hinia reticulata (Gastropoda), and Nuculoma tenuis (Bivalvia). Measured sediment/water partition coefficients were higher than predicted by the generic approach. Furthermore, predicted biota-to-sediment accumulation factors (BSAFs) derived from measured pore water concentrations were more in agreement with the bioaccumulation observed for two of the three species. Discrepancies associated with the third species (N. tenuis) were likely a result of particles remaining in the intestine (as shown by microscopic evaluation). These results indicate the importance of conducting site-specific evaluations of pore water concentrations and/or bioaccumulation studies by direct measurements to accurately provide a basis for risk assessment and remediation plans. The importance of knowledge regarding specific characteristics of model organisms is emphasized.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Bivalves/metabolismo , Alcatrão/análise , Alcatrão/metabolismo , Água Doce/química , Gastrópodes/metabolismo , Metalurgia , Poliquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Medição de Risco , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA