Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 155(3): 1146-57, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245192

RESUMO

Maize (Zea mays) oil has high value but is only about 4% of the grain by weight. To increase kernel oil content, fungal diacylglycerol acyltransferase2 (DGAT2) genes from Umbelopsis (formerly Mortierella) ramanniana and Neurospora crassa were introduced into maize using an embryo-enhanced promoter. The protein encoded by the N. crassa gene was longer than that of U. ramanniana. It included 353 amino acids that aligned to the U. ramanniana DGAT2A protein and a 243-amino acid sequence at the amino terminus that was unique to the N. crassa DGAT2 protein. Two forms of N. crassa DGAT2 were tested: the predicted full-length protein (L-NcDGAT2) and a shorter form (S-NcDGAT2) that encoded just the sequences that share homology with the U. ramanniana protein. Expression of all three transgenes in maize resulted in small but statistically significant increases in kernel oil. S-NcDGAT2 had the biggest impact on kernel oil, with a 26% (relative) increase in oil in kernels of the best events (inbred). Increases in kernel oil were also obtained in both conventional and high-oil hybrids, and grain yield was not affected by expression of these fungal DGAT2 transgenes.


Assuntos
Genes Fúngicos/genética , Mortierella/enzimologia , Neurospora crassa/enzimologia , Óleos de Plantas/metabolismo , Zea mays/genética , Sequência de Aminoácidos , Ácidos Graxos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Dados de Sequência Molecular , Mortierella/genética , Neurospora crassa/genética , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Plântula/metabolismo , Sementes/genética , Alinhamento de Sequência , Transgenes/genética , Zea mays/embriologia
2.
Plant Physiol ; 148(1): 89-96, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18633120

RESUMO

Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Genes Fúngicos , Glycine max/metabolismo , Mucorales/genética , Sementes/metabolismo , Óleo de Soja/biossíntese , Agricultura , Diacilglicerol O-Aciltransferase/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA