Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Psychiatry ; 27(11): 4502-4509, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071112

RESUMO

Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Feminino , Humanos , Masculino , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Encéfalo/metabolismo , Citalopram/farmacologia , Citalopram/uso terapêutico , Tomografia por Emissão de Pósitrons , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estudos Cross-Over
2.
Neuroimage ; 256: 119214, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452805

RESUMO

Changes in distribution of associated molecular targets have been reported across several neuropsychiatric disorders. However, the high-resolution topology of most proteins is unknown and simultaneous in vivo measurement in multi-receptor systems is complicated. To account for the missing proteomic information, messenger ribonucleic acid (mRNA) transcripts are typically used as a surrogate. Nonetheless, post-transcriptional and post-translational processes might cause the discrepancy between the final distribution of proteins and gene expression patterns. Therefore, this study aims to investigate ex vivo links between mRNA expression and corresponding receptor density in the human cerebral cortex. To this end, autoradiography data on the density of 15 different receptors in 38 brain regions were correlated with the expression patterns of 50 associated genes derived from microarray data (mA), RNA sequencing data (RNA-Seq) provided by the Allen Human Brain Atlas and predicted mRNA expression patterns (pred-mRNA). Spearman's rank correlation was used to evaluate the possible links between proteomic data and mRNA expression patterns. Correlations between mRNA and protein density varied greatly between targets: Positive associations were found for e.g. the serotonin 1A (pred-mRNA: rs = 0.708; mA: rs = 0.601) or kainate receptor (pred-mRNA: rs = 0.655; mA: rs = 0.601; RNA-Seq: rs = 0.575) as well as a few negative associations e.g. γ-Aminobutyric acid (GABA) A receptor subunit α3 (pred-mRNA: rs = -0.638; mA: rs = -0.619) or subunit α5 (pred-mRNA: rs = -0.565; mA: rs = -0.563), while most of the other investigated target receptors showed low correlations. The high variability in the correspondence of mRNA expression and receptor spatial distribution warrants caution when inferring the topology of molecular targets in the brain from transcriptome data. This not only highlights the longstanding value of molecular imaging but also indicates a need for comprehensive proteomic studies.


Assuntos
Córtex Cerebral , Proteômica , RNA Mensageiro , Autorradiografia , Encéfalo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de GABA-A/metabolismo
3.
Neuroimage ; 247: 118829, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923134

RESUMO

Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.


Assuntos
Escitalopram/farmacologia , Aprendizagem/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Áustria , Método Duplo-Cego , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Rememoração Mental/efeitos dos fármacos , Modelos Estatísticos
4.
Neuroimage ; 249: 118887, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999203

RESUMO

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Assuntos
Aprendizagem por Associação , Conectoma , Córtex Insular , Rede Nervosa , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Citalopram/farmacologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiologia , Descanso , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem
5.
Hum Brain Mapp ; 43(17): 5266-5280, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796185

RESUMO

The exploration of the spatial relationship between gene expression profiles and task-evoked response patterns known to be altered in neuropsychiatric disorders, for example depression, can guide the development of more targeted therapies. Here, we estimated the correlation between human transcriptome data and two different brain activation maps measured with functional magnetic resonance imaging (fMRI) in healthy subjects. Whole-brain activation patterns evoked during an emotional face recognition task were associated with topological mRNA expression of genes involved in cellular transport. In contrast, fMRI activation patterns related to the acceptance of monetary rewards were associated with genes implicated in cellular localization processes, metabolism, translation, and synapse regulation. An overlap of these genes with risk genes from major depressive disorder genome-wide association studies revealed the involvement of the master regulators TCF4 and PAX6 in emotion and reward processing. Overall, the identification of stable relationships between spatial gene expression profiles and fMRI data may reshape the prospects for imaging transcriptomics studies.


Assuntos
Transtorno Depressivo Maior , Humanos , Estudo de Associação Genômica Ampla , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Emoções/fisiologia , Recompensa , Mapeamento Encefálico/métodos , Expressão Gênica
6.
Cereb Cortex ; 30(6): 3771-3780, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31989157

RESUMO

The serotonin-1A receptor (5-HT1AR) represents a viable target in the treatment of disorders of the brain. However, development of psychiatric drugs continues to be hindered by the relative inaccessibility of brain tissue. Although the efficacy of drugs selective for the 5-HT1AR has not been proven, research continues to focus on drugs that influence this receptor subtype. To further knowledge on this topic, we investigated the topological coexpression patterns of the 5-HT1AR. We calculated Spearman's rho for the correlation of positron emission tomography-binding potentials (BPND) of the 5-HT1AR assessed in 30 healthy subjects using the tracer [carbonyl-11C]WAY-100635 and predicted whole-brain mRNA expression of 18 686 genes. After applying a threshold of r > 0.3 in a leave-one-out cross-validation of the prediction of mRNA expression, genes with ρ ≥ 0.7 were considered to be relevant. In cortical regions, 199 genes showed high correlation with the BPND of the 5-HT1AR, in subcortical regions 194 genes. Using our approach, we could consolidate the role of BDNF and implicate new genes (AnxA8, NeuroD2) in serotonergic functioning. Despite its explorative nature, the analysis can be seen as a gene prioritization approach to reduce the number of genes potentially connected to 5-HT1AR functioning and guide future in vitro studies.


Assuntos
Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Anexinas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Neuropeptídeos/genética , Piperazinas , Tomografia por Emissão de Pósitrons , Piridinas , Receptor 5-HT1A de Serotonina/genética , Antagonistas da Serotonina , Transcriptoma , Adulto Jovem
7.
Neuroimage ; 204: 116244, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606475

RESUMO

Neural plasticity is a complex process dependent on neurochemical underpinnings. Next to the glutamatergic system which contributes to memory formation via long-term potentiation (LTP) and long-term depression (LTD), the main inhibitory neurotransmitter, GABA is crucially involved in neuroplastic processes. Hence, we investigated changes in glutamate and GABA levels in the brain in healthy participants performing an associative learning paradigm. Twenty healthy participants (10 female, 25 ±â€¯5 years) underwent paired multi-voxel magnetic resonance spectroscopy imaging before and after completing 21 days of a facial associative learning paradigm in a longitudinal study design. Changes of GABA and glutamate were compared to retrieval success in the hippocampus, insula and thalamus. No changes in GABA and glutamate concentration were found after 21 days of associative learning. However, baseline hippocampal GABA levels were significantly correlated with initial retrieval success (pcor = 0.013, r = 0.690). In contrast to the thalamus and insula (pcor>0.1), higher baseline GABA levels in the hippocampus were associated with better retrieval performance in an associative learning paradigm. Therefore, our findings support the importance of hippocampal GABA levels in memory formation in the human brain in vivo.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/metabolismo , Rememoração Mental/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Reconhecimento Facial/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Adulto Jovem
8.
Int J Neuropsychopharmacol ; 23(1): 20-25, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740958

RESUMO

BACKGROUND: Treatment-resistant depression is among the most debilitating conditions in psychiatry. Recent studies have associated alterations in white matter microstructure measured with magnetic resonance imaging with poor antidepressant response. Therefore, the extent to which electroconvulsive therapy, the most effective therapeutic option for treatment-resistant depression, affects white matter microstructure warrants investigation. METHODS: A total 13 patients suffering from severe unipolar treatment-resistant depression underwent magnetic resonance imaging with a diffusion tensor imaging sequence before and after undergoing a series of right unilateral electroconvulsive therapy. Diffusivity metrics were compared voxel-wise using tract-based spatial statistics and repeated-measures ANOVA. RESULTS: A total 12 patients responded to electroconvulsive therapy and 9 were classified as remitters. An increase in axial diffusivity was observed in the posterior limb of the internal capsule of the right hemisphere (PFWE ≤ .05). The increase in this area was higher in the right compared with the left hemisphere (P < .05). No correlation of this effect with treatment response could be found. CONCLUSIONS: The strong lateralization of effects to the hemisphere of electrical stimulation suggests an effect of electroconvulsive therapy on diffusivity metrics which is dependent of electrode placement. Investigation in controlled studies is necessary to reveal to what extent the effects of electroconvulsive therapy on white matter microstructure are related to clinical outcomes and electrode placement.


Assuntos
Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Imagem de Tensor de Difusão , Eletroconvulsoterapia , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Cápsula Interna/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357321

RESUMO

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Assuntos
Córtex Cerebral/metabolismo , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Serotonina/metabolismo , Adulto Jovem
10.
Int J Neuropsychopharmacol ; 22(8): 513-522, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175352

RESUMO

BACKGROUND: Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS: To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS: We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS: The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.


Assuntos
Afeto/efeitos dos fármacos , Antidepressivos de Segunda Geração/uso terapêutico , Citalopram/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico , Adolescente , Adulto , Áustria , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Substituição de Medicamentos , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
11.
Br J Psychiatry ; 214(3): 159-167, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442205

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is the treatment of choice for severe mental illness including treatment-resistant depression (TRD). Increases in volume of the hippocampus and amygdala following ECT have consistently been reported.AimsTo investigate neuroplastic changes after ECT in specific hippocampal subfields and amygdala nuclei using high-resolution structural magnetic resonance imaging (MRI) (trial registration: clinicaltrials.gov - NCT02379767). METHOD: MRI scans were carried out in 14 patients (11 women, 46.9 years (s.d. = 8.1)) with unipolar TRD twice before and once after a series of right unilateral ECT in a pre-post study design. Volumes of subcortical structures, including subfields of the hippocampus and amygdala, and cortical thickness were extracted using FreeSurfer. The effect of ECT was tested using repeated-measures ANOVA. Correlations of imaging and clinical parameters were explored. RESULTS: Increases in volume of the right hippocampus by 139.4 mm3 (s.d. = 34.9), right amygdala by 82.3 mm3 (s.d. = 43.9) and right putamen by 73.9 mm3 (s.d. = 77.0) were observed. These changes were localised in the basal and lateral nuclei, and the corticoamygdaloid transition area of the amygdala, the hippocampal-amygdaloid transition area and the granule cell and molecular layer of the dentate gyrus. Cortical thickness increased in the temporal, parietal and insular cortices of the right hemisphere. CONCLUSIONS: Following ECT structural changes were observed in hippocampal subfields and amygdala nuclei that are specifically implicated in the pathophysiology of depression and stress-related disorders and retain a high potential for neuroplasticity in adulthood.Declaration of interestS.K. has received grants/research support, consulting fees and/or honoraria within the past 3 years from Angelini, AOP Orphan Pharmaceuticals AG, AstraZeneca, Celegne GmbH, Eli Lilly, Janssen-Cilag Pharma GmbH, KRKA-Pharma, Lundbeck A/S, Neuraxpharm, Pfizer, Pierre Fabre, Schwabe and Servier. R.L. received travel grants and/or conference speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe GmbH, Orphan Pharmaceuticals AG, Janssen-Cilag Pharma GmbH, and Roche Austria GmbH.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Hipocampo/diagnóstico por imagem , Adulto , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Eletroconvulsoterapia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Resultado do Tratamento
12.
Neuroimage ; 181: 323-330, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29966719

RESUMO

INTRODUCTION: The brain's energy budget can be non-invasively assessed with different imaging modalities such as functional MRI (fMRI) and PET (fPET), which are sensitive to oxygen and glucose demands, respectively. The introduction of hybrid PET/MRI systems further enables the simultaneous acquisition of these parameters. Although a recently developed method offers the quantification of task-specific changes in glucose metabolism (CMRGlu) in a single measurement, direct comparison of the two imaging modalities is still difficult because of the different temporal resolutions. Thus, we optimized the protocol and systematically assessed shortened task durations of fPET to approach that of fMRI. METHODS: Twenty healthy subjects (9 male) underwent one measurement on a hybrid PET/MRI scanner. During the scan, tasks were completed in four blocks for fMRI (4 × 30 s blocks) and fPET: participants tapped the fingers of their right hand repeatedly to the thumb while watching videos of landscapes. For fPET, subjects were randomly assigned to groups of n = 5 with varying task durations of 10, 5, 2 and 1 min, where task durations were kept constant within a measurement. The radiolabeled glucose analogue [18F]FDG was administered as 20% bolus plus constant infusion. The bolus increases the signal-to-noise ratio and leaves sufficient activity to detect task-related effects but poses additional challenges due to a discontinuity in the tracer uptake. First, three approaches to remove task effects from the baseline term were evaluated: (1) multimodal, based on the individual fMRI analysis, (2) atlas-based by removing presumably activated regions and (3) model-based by fitting the baseline with exponential functions. Second, we investigated the need to capture the arterial input function peak with automatic blood sampling for the quantification of CMRGlu. We finally compared the task-specific activation obtained from fPET and fMRI qualitatively and statistically. RESULTS: CMRGlu quantified only with manual arterial samples showed a strong correlation to that obtained with automatic sampling (r = 0.9996). The multimodal baseline definition was superior to the other tested approaches in terms of residuals (p < 0.001). Significant task-specific changes in CMRGlu were found in the primary visual and motor cortices (tM1 = 18.7 and tV1 = 18.3). Significant changes of fMRI activation were found in the same areas (tM1 = 16.0 and tV1 = 17.6) but additionally in the supplementary motor area, ipsilateral motor cortex and secondary visual cortex. Post-hoc t-tests showed strongest effects for task durations of 5 and 2 min (all p < 0.05 FWE corrected), whereas 1 min exhibited pronounced unspecific activation. Percent signal change (PSC) was higher for CMRGlu (∼18%-27%) compared to fMRI (∼2%). No significant association between PSC of task-specific CMRGlu and fMRI was found (r = 0.26). CONCLUSION: Using a bolus plus constant infusion protocol, the necessary task duration for reliable quantification of task-specific CMRGlu could be reduced to 5 and 2 min, therefore, approaching that of fMRI. Important for valid quantification is a correct baseline definition, which was ideal when task-relevant voxels were determined with fMRI. The absence of a correlation and the different activation pattern between fPET and fMRI suggest that glucose metabolism and oxygen demand capture complementary aspects of energy demands.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Desempenho Psicomotor/fisiologia , Compostos Radiofarmacêuticos/administração & dosagem , Córtex Visual/fisiologia , Adulto , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/metabolismo , Imagem Multimodal , Compostos Radiofarmacêuticos/farmacocinética , Córtex Visual/diagnóstico por imagem , Córtex Visual/metabolismo , Adulto Jovem
13.
Neuroimage ; 176: 259-267, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723639

RESUMO

The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl-11C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level.


Assuntos
Encéfalo , Neuroimagem , Tomografia por Emissão de Pósitrons , RNA Mensageiro/metabolismo , Análise Espacial , Transcriptoma , Atlas como Assunto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética , Análise em Microsséries , Receptor 5-HT1A de Serotonina/metabolismo
14.
Int J Neuropsychopharmacol ; 21(2): 145-153, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045739

RESUMO

Background: Comprehensive description of ketamine's molecular binding profile becomes increasingly pressing as use in real-life patient cohorts widens. Animal studies attribute a significant role in the substance's antidepressant effects to the serotonergic system. The serotonin transporter is a highly relevant target in this context, because it is central to depressive pathophysiology and treatment. This is, to our knowledge, the first study investigating ketamine's serotonin transporter binding in vivo in humans. Methods: Twelve healthy subjects were assessed twice using [11C]DASB positron emission tomography. A total of 0.50 mg/kg bodyweight ketamine was administered once i.v. prior to the second positron emission tomography scan. Ketamine plasma levels were determined during positron emission tomography. Serotonin transporter nondisplaceable binding potential was computed using a reference region model, and occupancy was calculated for 4 serotonin transporter-rich regions (caudate, putamen, thalamus, midbrain) and a whole-brain region of interest. Results: After administration of the routine antidepressant dose, ketamine showed <10% occupancy of the serotonin transporter, which is within the test-retest variability of [11C]DASB. A positive correlation between ketamine plasma levels and occupancy was shown. Conclusions: Measurable occupancy of the serotonin transporter was not detectable after administration of an antidepressant dose of ketamine. This might suggest that ketamine binding of the serotonin transporter is unlikely to be a primary antidepressant mechanism at routine antidepressant doses, as substances that facilitate antidepressant effects via serotonin transporter binding (e.g., selective serotonin reuptake inhibitors) show 70% to 80% occupancy. Administration of high-dose ketamine is widening. Based on the positive relationship we find between ketamine plasma levels and occupancy, there is a need for investigation of ketamine's serotonin transporter binding at higher doses.


Assuntos
Compostos de Anilina , Antidepressivos/farmacocinética , Ketamina/farmacocinética , Mesencéfalo/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos , Serotoninérgicos , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Sulfetos , Tálamo/efeitos dos fármacos , Adulto , Antidepressivos/administração & dosagem , Humanos , Ketamina/administração & dosagem , Masculino , Mesencéfalo/diagnóstico por imagem , Neostriado/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto Jovem
15.
Int J Psychiatry Clin Pract ; 21(1): 2-12, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28097909

RESUMO

OBJECTIVE: Clinical trials demonstrated that ketamine exhibits rapid antidepressant efficacy when administered in subanaesthetic dosages. We reviewed currently available literature investigating efficacy, response rates and safety profile. METHODS: Twelve studies investigating unipolar, seven on bipolar depression were included after search in medline, scopus and web of science. RESULTS: Randomized, placebo-controlled or open-label trials reported antidepressant response rates after 24 h on primary outcome measures at 61%. The average reduction of Hamilton Depression Rating Scale (HAM-D) was 10.9 points, Beck Depression Inventory (BDI) 15.7 points and Montgomery-Asberg Depression Rating Scale (MADRS) 20.8 points. Ketamine was always superior to placebo. Most common side effects were dizziness, blurred vision, restlessness, nausea/vomiting and headache, which were all reversible. Relapse rates ranged between 60% and 92%. To provide best practice-based information to patients, a consent-form for application and modification in local language is included. CONCLUSIONS: Ketamine constitutes a novel, rapid and efficacious treatment option for patients suffering from treatment resistant depression and exhibits rapid and significant anti-suicidal effects. New administration routes might serve as alternative to intravenous regimes for potential usage in outpatient settings. However, long-term side effects are not known and short duration of antidepressant response need ways to prolong ketamine's efficacy.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Humanos , Ketamina/administração & dosagem , Ketamina/efeitos adversos
16.
Hum Brain Mapp ; 37(3): 884-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678348

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Humanos , Desequilíbrio de Ligação , Masculino , Morfolinas , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Regiões Promotoras Genéticas , Compostos Radiofarmacêuticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Neuroimage ; 108: 243-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536499

RESUMO

Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Citalopram/química , Citalopram/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Isomerismo , Imageamento por Ressonância Magnética , Masculino
18.
Neuroimage ; 111: 505-12, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652393

RESUMO

Serotonergic neurotransmission is thought to underlie a dynamic interrelation between different key structures of the serotonin system. The serotonin transporter (SERT), which is responsible for the reuptake of serotonin from the synaptic cleft into the neuron, as well as the serotonin-1A (5-HT1A) and -1B (5-HT1B) receptors, inhibitory auto-receptors in the raphe region and projection areas, respectively, are likely to determine serotonin release. Thereby, they are involved in the regulation of extracellular serotonin concentrations and the extent of serotonergic effects in respective projection areas. Complex receptor interactions can be assessed in vivo with positron emission tomography (PET) and single-nucleotide-polymorphisms, which are thought to alter protein expression levels. Due to the complexity of the serotonergic system, gene × gene interactions are likely to regulate transporter and receptor expression and therefore subsequently serotonergic transmission. In this context, we measured 51 healthy subjects (mean age 45.5 ± 12.9, 38 female) with PET using [carbonyl-(11)C]WAY-100635 to determine 5-HT1A receptor binding potential (5-HT1A BPND). Genotyping for rs6296 (HTR1B) and 5-HTTLPR (SERT gene promoter polymorphism) was performed using DNA isolated from whole blood. Voxel-wise whole-brain ANOVA revealed a positive interaction effect of genotype groups (5-HTTLPR: LL, LS+SS and HTR1B: rs6296: CC, GC+GG) on 5-HT1A BPND with peak t-values in the bilateral parahippocampal gyrus. More specifically, highest 5-HT1A BPND was identified for individuals homozygous for both the L-allele of 5-HTTLPR and the C-allele of rs6296. This finding suggests that the interaction between two major serotonergic structures involved in serotonin release, specifically the SERT and 5-HT1B receptor, results in a modification of the inhibitory serotonergic tone mediated via 5-HT1A receptors.


Assuntos
Encéfalo/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Ligação Proteica , Piridinas , Antagonistas da Serotonina
20.
Transl Psychiatry ; 13(1): 208, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322010

RESUMO

Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.


Assuntos
Transtorno Afetivo Sazonal , Serotonina , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Harmina/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Transtorno Afetivo Sazonal/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA