Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(17): 4367-4370, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048655

RESUMO

Photovoltaic integrated luminescent solar concentrators (LSCs) can be embedded in modern buildings to serve as power-generation units. In this Letter, we demonstrate and develop a Monte Carlo ray-tracing model and a numerical description for the performance and loss evaluation of LSCs based on colloidal quantum dots. The performance differences between bulk and thin-film LSCs are systematically analyzed at different sizes and concentrations. It is found that large-area thin-film LSCs generally perform better, which is attributed to the suppression of scattering and the retention of quantum yield by this structure with twice the performance of bulk LSCs.

2.
Nanotechnology ; 33(26)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35290964

RESUMO

The fine particulate matter (PM) pollution has become a serious concern to public health. As the core part of PM air filters, high-performance electrostatic nanofiber membranes are urgently needed. However, the existing air filters remain challenging to further decrease the pressure drop to improve the wearer comfort. On the other hand, the rapidly disappearing static electricity of the existing electrostatic nanofiber inevitably gives rise to a relatively short service life. Here, we demonstrate a novel and enhanced electrostatic nanofiber membrane by introducing the halloysite nanotubes (HNTs) to the traditional electrospun PAN nanofiber membrane. The optimal PAN-HNTs nanofiber membrane shows a high removal efficiency of 99.54%, a low pressure drop of 39 Pa, and a high quality factor of 0.89 Pa-1. This greatly improved filtration performance can be attributed to the increased surface area and diameter of nanofiber after introducing the HNTs as additives with suitable doping concentrations. More importantly, compared with the pure PAN nanofiber membrane, the electrostatic capacity of the PAN-HNTs nanofiber membrane is significantly enhanced, which is confirmed by the leaf electroscope. After introducing the HNTs as additives, the surface of the PAN-HNTs nanofiber membrane becomes hydrophilic, which benefits for preventing foulants from attaching to the surface. We anticipate that the PAN-HNTs nanofibers as high-performance membrane air filters will bring great benefits to public health.

3.
Nanotechnology ; 32(23)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33647897

RESUMO

Particulate matters (PMs) air pollution is identified as the major threat to public health and climate. High-performance air filter technology based on various electrospun nanofibers is considered as an effective strategy to eliminate the effects of PMs air pollution. However, to date, nearly all the existing micro-/nanofibers are hard to meet both requirements of high PMs removal efficiency and long service life. In this work, we reported the production of laminated polyacrylonitrile(PAN)-boehmite nanoparticles (BNPs) nanofiber structured membrane by the electrospinning process. The dimension of PAN-BNPs nanofiber can be tunable from (0.09 ± 0.03)µm to (0.81 ± 0.11)µm by controlling the PAN and BNPs concentrations in precursors. The optimized PAN-BNPs nanofiber air filter with a basis weight of 1 g m-2demonstrates the attractive attributes of high PM2.5removal efficiency up to 99.962% and low pressure drop of 58 Pa. Most importantly, after introducing the BNPs as electret, the removal efficiency is very stable under the air flow rate of 6 l min-1. This PAN-BNPs nanofiber with a long electrostatic duration time offers an approach for fabricating future high-performance air filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA