Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(3): 1247-1287, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259248

RESUMO

Metallic materials are usually composed of single phase or multiple phases, which refers to homogeneous regions with distinct types of the atom arrangement. The recent studies on nanostructured metallic materials provide a variety of promising approaches to engineer the phases at the nanoscale. Tailoring phase size, phase distribution, and introducing new structures via phase transformation contribute to the precise modification in deformation behaviors and electronic structures of nanostructural metallic materials. Therefore, phase engineering of nanostructured metallic materials is expected to pave an innovative way to develop materials with advanced mechanical and functional properties. In this review, we present a comprehensive overview of the engineering of heterogeneous nanophases and the fundamental understanding of nanophase formation for nanostructured metallic materials, including supra-nano-dual-phase materials, nanoprecipitation- and nanotwin-strengthened materials. We first review the thermodynamics and kinetics principles for the formation of the supra-nano-dual-phase structure, followed by a discussion on the deformation mechanism for structural metallic materials as well as the optimization in the electronic structure for electrocatalysis. Then, we demonstrate the origin, classification, and mechanical and functional properties of the metallic materials with the structural characteristics of dense nanoprecipitations or nanotwins. Finally, we summarize some potential research challenges in this field and provide a short perspective on the scientific implications of phase engineering for the design of next-generation advanced metallic materials.

2.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358943

RESUMO

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

3.
Angew Chem Int Ed Engl ; : e202410978, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287021

RESUMO

Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (61.3 % at 10 mA cm-2) and long-term stability (efficiency remains at 58.8 % after 1050 charge-discharge cycles).

4.
Nat Commun ; 15(1): 2046, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448407

RESUMO

Continuous industrialization and other human activities have led to severe water quality deterioration by harmful pollutants. Achieving robust and high-throughput water purification is challenging due to the coupling between mechanical strength, mass transportation and catalytic efficiency. Here, a structure-function integrated system is developed by Douglas fir wood-inspired metamaterial catalysts featuring overlapping microlattices with bimodal pores to decouple the mechanical, transport and catalytic performances. The metamaterial catalyst is prepared by metal 3D printing (316 L stainless steel, mainly Fe) and electrochemically decorated with Co to further boost catalytic functionality. Combining the flexibility of 3D printing and theoretical simulation, the metamaterial catalyst demonstrates a wide range of mechanical-transport-catalysis capabilities while a 70% overlap rate has 3X more strength and surface area per unit volume, and 4X normalized reaction kinetics than those of traditional microlattices. This work demonstrates the rational and harmonious integration of structural and functional design in robust and high throughput water purification, and can inspire the development of various flow catalysts, flow batteries, and functional 3D-printed materials.

5.
Nat Commun ; 14(1): 5389, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666814

RESUMO

Low-dimensional nanocrystals with controllable defects or strain modifications are newly emerging active electrocatalysts for hydrogen-energy conversion and utilization; however, a crucial challenge remains in insufficient stability due to spontaneous structural degradation and strain relaxation. Here we report a Turing structuring strategy to activate and stabilize superthin metal nanosheets by incorporating high-density nanotwins. Turing configuration, realized by constrained orientation attachment of nanograins, yields intrinsically stable nanotwin network and straining effects, which synergistically reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction. Turing PtNiNb nanocatalyst achieves 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared against commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low Pt mass loading of 0.05 mg cm-2 demonstrates at least 500 h stability at 1000 mA cm-2, disclosing the stable catalysis. Besides, this new paradigm can be extended to Ir/Pd/Ag-based nanocatalysts, illustrating the universality of Turing-type catalysts.

6.
Nat Commun ; 13(1): 2183, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449135

RESUMO

Glass-to-glass transitions are useful for us to understand the glass nature, but it remains difficult to tune the metallic glass into significantly different glass states. Here, we have demonstrated that the high-entropy can enhance the degree of disorder in an equiatomic high-entropy metallic glass NbNiZrTiCo and elevate it to a high-energy glass state. An unusual glass-to-glass phase transition is discovered during heating with an enormous heat release even larger than that of the following crystallization at higher temperatures. Dramatic atomic rearrangement with a short- and medium-range ordering is revealed by in-situ synchrotron X-ray diffraction analyses. This glass-to-glass transition leads to a significant improvement in the modulus, hardness, and thermal stability, all of which could promote their applications. Based on the proposed high-entropy effect, two high-entropy metallic glasses are developed and they show similar glass-to-glass transitions. These findings uncover a high-entropy effect in metallic glasses and create a pathway for tuning the glass states and properties.

7.
J Hazard Mater ; 388: 122043, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954302

RESUMO

Since the treatment of wastewater containing azo dye presents problems worldwide, it is important to seek effective materials and technology for the purification of wastewater containing azo dye. Fe-based metallic glasses have been identified as promising materials for the decomposition of dyeing wastewater due to their high chemical activity resulting from their amorphous structure. It is imperative to further improve their degradation performance, and especially their durability, for potential application in wastewater purification. Here, composite structures constructed of porous Ni and amorphous Fe78Si9B13 powder with markedly enhanced degradation performance in Orange II solution were obtained by utilizing a magnet. Due to the favorable effects of structural electrocatalysis and high dispersity of the distinctive porous architecture in addition to its self-cleaning properties, the solid-liquid interface exhibited strong, continuous electrical and mass transport, and a compelling improvement in degradation performance was achieved. Based on degradation tests and spectrum analysis, the kinetic rate was improved over 11-fold. Moreover, ultra-high durability over 100 cycles was revealed in cycling tests. The results indicate that wastewater degradation performance can be greatly enhanced by properly combining Fe-based metallic glasses with porous material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA