Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 294-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940729

RESUMO

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Assuntos
Alquilação , Aminas , Catálise , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligantes , Preparações Farmacêuticas/química
2.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

3.
Angew Chem Int Ed Engl ; 63(11): e202319850, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38273811

RESUMO

In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.

4.
J Am Chem Soc ; 145(11): 6535-6545, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912664

RESUMO

Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.

5.
J Am Chem Soc ; 145(27): 14686-14696, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392183

RESUMO

The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.

6.
Angew Chem Int Ed Engl ; 62(2): e202214709, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357331

RESUMO

The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-ß-lactams with organoboronate esters could provide the synthetically valuable α-quaternary ß-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.


Assuntos
Ésteres , beta-Lactamas , Cobre/química , Catálise , Elétrons
7.
Angew Chem Int Ed Engl ; 62(13): e202218523, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36722939

RESUMO

The copper-catalyzed enantioselective radical difunctionalization of alkenes from readily available alkyl halides and organophosphorus reagents possessing a P-H bond provides an appealing approach for the synthesis of α-chiral alkyl phosphorus compounds. The major challenge arises from the easy generation of a P-centered radical from the P-H-type reagent and its facile addition to the terminal side of alkenes, leading to reverse chemoselectivity. We herein disclose a radical 1,2-carbophosphonylation of styrenes in a highly chemo- and enantioselective manner. The key to the success lies in not only the implementation of dialkyl phosphites with a strong bond dissociation energy to promote the desired chemoselectivity but also the utilization of an anionic chiral N,N,N-ligand to forge the chiral C(sp3 )-P bond. The developed Cu/N,N,N-ligand catalyst has enriched our library of single-electron transfer catalysts in the enantioselective radical transformations.

8.
Angew Chem Int Ed Engl ; 62(27): e202302983, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37154671

RESUMO

Transition-metal catalyzed enantioconvergent cross-coupling of tertiary alkyl halides with ammonia offers a rapid avenue to chiral unnatural α,α-disubstituted amino acids. However, the construction of chiral C-N bonds between tertiary-carbon electrophiles and nitrogen nucleophiles presented a great challenge owing to steric congestion. We report a copper-catalyzed enantioconvergent radical C-N cross-coupling of alkyl halides with sulfoximines (as ammonia surrogates) under mild conditions by employing a chiral anionic N,N,N-ligand with a long spreading side arm. An array of α,α-disubstituted amino acid derivatives were obtained with good efficiency and enantioselectivity. The synthetic utility of the strategy has been showcased by the elaboration of the coupling products into different chiral α-fully substituted amine building blocks.

9.
J Am Chem Soc ; 144(38): 17319-17329, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36048164

RESUMO

The enantioconvergent cross-coupling of racemic alkyl halides represents a powerful tool for the synthesis of enantioenriched molecules. In this regard, the first-row transition metal catalysis provides a suitable mechanism for stereoconvergence by converting racemic alkyl halides to prochiral radical intermediates owing to their good single-electron transfer ability. In contrast to the noble development of chiral nickel catalyst, copper-catalyzed enantioconvergent radical cross-coupling of alkyl halides is less studied. Besides the enantiocontrol issue, the major challenge arises from the weak reducing capability of copper that slows the reaction initiation. Recently, significant efforts have been dedicated to basic research aimed at developing chiral ligands for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides. This perspective will discuss the advances in this burgeoning area with particular emphasis on the strategic chiral anionic ligand design to tune the reducing capability of copper for the reaction initiation under thermal conditions from our research group.


Assuntos
Cobre , Níquel , Catálise , Elétrons , Ligantes
10.
J Am Chem Soc ; 144(39): 18081-18089, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153984

RESUMO

The copper-catalyzed enantioselective intermolecular radical 1,2-carboamination of alkenes with readily accessible alkyl halides is an appealing strategy for producing chiral amine scaffolds. The challenge arises from the easily occurring atom transfer radical addition between alkyl halides and alkenes and the issue of enantiocontrol. We herein describe a radical alkene 1,2-carboamination with sulfoximines in a highly chemo- and enantioselective manner. The key to the success of this process is the conceptual design of a counterion/highly sterically demanded ligand coeffect to promote the ligand exchange of copper(I) with sulfoximines and forge chiral C-N bonds between alkyl radicals and the chiral copper(II) complex. The reaction covers alkenes bearing distinct electronic properties, such as aryl-, heteroaryl-, carbonyl-, and aminocarbonyl-substituted ones, and various radical precursors, including alkyl chlorides, bromides, iodides, and the CF3 source. Facile transformations deliver many chiral amine building blocks of interest in organic synthesis and related areas.


Assuntos
Alcenos , Cobre , Alcenos/química , Aminas , Brometos , Catálise , Cloretos , Cobre/química , Iodetos/química , Ligantes , Estrutura Molecular , Estereoisomerismo
11.
J Am Chem Soc ; 144(14): 6442-6452, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363483

RESUMO

The enantioconvergent radical C(sp3)-C(sp2) cross-coupling of alkyl halides with alkenylboronate esters is an appealing tool in the assembly of synthetically valuable enantioenriched alkenes owing to the ready availability, low toxicity, and air/moisture stability of alkenylboronate esters. Here, we report a copper/chiral N,N,N-ligand catalytic system for the enantioconvergent cross-coupling of benzyl/propargyl halides with alkenylboronate esters (>80 examples) with good functional group tolerance. The key to the success is the rational design of hemilabile N,N,N-ligands by mounting steric hindrance at the ortho position of one coordinating quinoline ring. Thus, the newly designed ligand could not only promote the radical cross-coupling process in the tridentate form but also deliver enantiocontrol over highly reactive alkyl radicals in the bidentate form. Facile follow-up transformations highlight its potential utility in the synthesis of various enantioenriched building blocks as well as in the late-stage functionalization for drug discovery.


Assuntos
Cobre , Ésteres , Alcenos , Catálise , Ligantes
12.
Angew Chem Int Ed Engl ; 61(32): e202205743, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652388

RESUMO

Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.

13.
J Am Chem Soc ; 143(37): 15413-15419, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505516

RESUMO

α-Chiral alkyl primary amines are virtually universal synthetic precursors for all other α-chiral N-containing compounds ubiquitous in biological, pharmaceutical, and material sciences. The enantioselective amination of common alkyl halides with ammonia is appealing for potential rapid access to α-chiral primary amines, but has hitherto remained rare due to the multifaceted difficulties in using ammonia and the underdeveloped C(sp3)-N coupling. Here we demonstrate sulfoximines as excellent ammonia surrogates for enantioconvergent radical C-N coupling with diverse racemic secondary alkyl halides (>60 examples) by copper catalysis under mild thermal conditions. The reaction efficiently provides highly enantioenriched N-alkyl sulfoximines (up to 99% yield and >99% ee) featuring secondary benzyl, propargyl, α-carbonyl alkyl, and α-cyano alkyl stereocenters. In addition, we have converted the masked α-chiral primary amines thus obtained to various synthetic building blocks, ligands, and drugs possessing α-chiral N-functionalities, such as carbamate, carboxylamide, secondary and tertiary amine, and oxazoline, with commonly seen α-substitution patterns. These results shine light on the potential of enantioconvergent radical cross-coupling as a general chiral carbon-heteroatom formation strategy.

14.
Acc Chem Res ; 53(1): 170-181, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657546

RESUMO

Asymmetric functionalization of alkyl radicals represents a robust yet underdeveloped method for efficient construction and decoration of carbon skeletons in chiral organic molecules. In this field, we have been inspired by the excellent redox, alkyl radical trapping, and Lewis acidic properties of copper to develop several catalytic modes for asymmetric reactions involving alkyl radicals. At the beginning, we discovered tandem radical hydrotrifluoromethylation of unactivated alkenes and enantioselective alkoxylation of remote C(sp3)-H bonds by copper/chiral phosphate relay catalysis. This success has stimulated us to develop an asymmetric three-component 1,2-dicarbofunctionalization of 1,1-diarylalkenes using a similar strategy via radical intermediates. Meanwhile, we also discovered a copper/chiral secondary amine cooperative catalyst for asymmetric radical intramolecular cyclopropanation of alkenes using α-aldehyde methylene groups as C1 sources. The trapping of alkyl radical intermediates by CuII species during the reaction was essential for the chemoselectivity toward cyclopropanation. Encouraged by the efficient enantiocontrol with chiral phosphate and the effective trapping of alkyl radicals with CuII species, we then sought to develop copper/chiral phosphate as a single-electron-transfer catalyst for asymmetric reactions involving alkyl radicals. Subsequently, we successfully achieved a series of highly enantioselective 1,2-aminofluoroalkylation, -aminoarylation, -diamination, -aminosilylation, and -oxytrifluoromethylation of unactivated alkenes. The key for high enantioinduction was believed to be the effective trapping of alkyl radicals by CuII/chiral phosphate complexes. Besides, an achiral pyridine ligand was found to be indispensable for achieving high enantioselectivity, presumably via stabilization of CuIII species in the 1,2-alkoxytrifluoromethylation reaction. This discovery reminded us of tuning the redox properties and chemoreactivity of copper centers with an ancillary ligand. As a result, we subsequently identified cinchona alkaloid-derived sulfonamides as novel neutral-anionic hybrid ligands for simultaneous chemo- and enantiocontrol. We thus accomplished highly enantioselective 1,2-iminoxytrifluoromethylation of unactivated alkenes under the catalysis of copper/cinchona alkaloid-derived sulfonamide ligand, affording trifluoromethylated isoxazolines in high enantiomeric excess. Our copper-catalyzed asymmetric reactions with alkyl radicals provide expedient access to a diverse range of valuable chiral molecules with broad application potential in areas of organic synthesis, medicine, agrochemical, and material sciences.

15.
Chem Soc Rev ; 49(1): 32-48, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31802082

RESUMO

The radical-involved 1,2-difunctionalization of alkenes has developed into a robust tool for preparation of complex organic molecules. Despite significant advances in this area, the catalytic asymmetric version still remains a challenging task mainly due to the difficulty in the stereocontrol of the highly reactive radical intermediates. Recently, owing to the good single-electron transfer ability and coordination with chiral ligands of copper catalysts, remarkable achievements in radical-involved asymmetric alkene difunctionalization have been made via synergistic combination of copper and chiral ligands. This tutorial review highlights the recent progress in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes and the mechanistic scenarios governing the stereocontrol, with an emphasis on utilization of chiral ligands.

16.
Angew Chem Int Ed Engl ; 60(51): 26710-26717, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606167

RESUMO

The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.

17.
Angew Chem Int Ed Engl ; 60(4): 2160-2164, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33052624

RESUMO

In contrast to the wealth of asymmetric transformations for generating central chirality from alkyl radicals, the enantiocontrol over the allenyl radicals for forging axial chirality represents an uncharted domain. The challenge arises from the unique elongated linear configuration of the allenyl radicals that necessitates the stereo-differentiation of remote motifs away from the radical reaction site. We herein describe a copper-catalyzed asymmetric radical 1,4-carboalkynylation of 1,3-enynes via the coupling of allenyl radicals with terminal alkynes, providing diverse synthetically challenging tetrasubstituted chiral allenes. A chiral N,N,P-ligand is crucial for both the reaction initiation and the enantiocontrol over the highly reactive allenyl radicals. The reaction features a broad substrate scope, covering a variety of (hetero)aryl and alkyl alkynes and 1,3-enynes as well as radical precursors with excellent functional group tolerance.

18.
Angew Chem Int Ed Engl ; 60(1): 380-384, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32949177

RESUMO

The development of enantioconvergent cross-coupling of racemic alkyl halides directly with heteroarene C(sp2 )-H bonds has been impeded by the use of a base at elevated temperature that leads to racemization. We herein report a copper(I)/cinchona-alkaloid-derived N,N,P-ligand catalytic system that enables oxidative addition with racemic alkyl bromides under mild conditions. Thus, coupling with azole C(sp2 )-H bonds has been achieved in high enantioselectivity, affording a number of potentially useful α-chiral alkylated azoles, such as 1,3,4-oxadiazoles, oxazoles, and benzo[d]oxazoles as well as 1,3,4-triazoles, for drug discovery. Mechanistic experiments indicated facile deprotonation of an azole C(sp2 )-H bond and the involvement of alkyl radical species under the reaction conditions.

19.
J Am Chem Soc ; 142(46): 19652-19659, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146993

RESUMO

A copper-catalyzed enantioconvergent Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling of various racemic alkyl halides with organoboronate esters has been established in high enantioselectivity. Critical to the success is the use of a chiral cinchona alkaloid-derived N,N,P-ligand for not only enhancing the reducing capability of copper catalyst to favor a stereoablative radical pathway over a stereospecific SN2-type process but also providing an ideal chiral environment to achieve the challenging enantiocontrol over the highly reactive radical species. The reaction has a broad scope with respect to both coupling partners, covering aryl- and heteroarylboronate esters, as well as benzyl-, heterobenzyl-, and propargyl bromides and chlorides with good functional group compatibility. Thus, it provides expedient access toward a range of useful enantioenriched skeletons featuring chiral tertiary benzylic stereocenters.

20.
J Am Chem Soc ; 142(20): 9501-9509, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338510

RESUMO

A copper-catalyzed intermolecular three-component asymmetric radical 1,2-carboalkynylation of alkenes has been developed, providing straightforward access to diverse chiral alkynes from readily available alkyl halides and terminal alkynes. The utilization of a cinchona alkaloid-derived multidentate N,N,P-ligand is crucial for the efficient radical generation from mildly oxidative precursors by copper and the effective inhibition of the undesired Glaser coupling side reaction. The substrate scope is broad, covering (hetero)aryl-, alkynyl-, and aminocarbonyl-substituted alkenes, (hetero)aryl and alkyl as well as silyl alkynes, and tertiary to primary alkyl radical precursors with excellent functional group compatibility. Facile transformations of the obtained chiral alkynes have also been demonstrated, highlighting the excellent complementarity of this protocol to direct 1,2-dicarbofunctionalization reactions with C(sp2/sp3)-based reagents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA