Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(48)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611549

RESUMO

Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. To achieve a better imaging effect, variety of NIR-II fluorescence probes have been designed and developed. Among them, semiconducting oligomers (SOs) have shown unique advantages including high photostability and quantum yield, making them promise in NIR-II fluorescence imaging. Herein, we design a SO nanoparticle (ASONi) for NIR-II fluorescence imaging of tumor. ASONi is composed of an azido-functionalized semiconducting oligomer as the NIR-II fluorescence emitter, and a benzene sulfonamide-ended DSPE-PEG (DSPE-PEG-CAi) as the stabilizer. Owing to the benzene sulfonamide groups on the surface, ASONi has the capability of targeting the carbonic anhydrase IX (CA IX) of MDA-MB-231 breast cancer cell. Compared with ASON without benzene sulfonamide groups on the surface, ASONi has a 1.4-fold higher uptake for MDA-MB-231 cells and 1.5-fold higher breast tumor accumulation after i.v. injection. The NIR-II fluorescence signal of ASONi can light the tumor up within 4 h, demonstrating its capability of active tumor targeting and NIR-II fluorescence imaging.


Assuntos
Inibidores da Anidrase Carbônica , Nanopartículas , Benzeno , Imagem Óptica , Transporte Biológico , Sulfanilamida
2.
Front Bioeng Biotechnol ; 9: 780993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805127

RESUMO

Phototheranostics have gained more and more attention in the field of cancer diagnosis and therapy. Among a variety of fluorophores for phototheranostics, semiconducting polymer nanoparticles (SPNs), which are usually constructed by encapsulating hydrophobic semiconducting polymers (SPs) with amphiphilic copolymers, have shown great promise. As second near-infrared (NIR-II) fluorescence imaging has both higher imaging resolution and deeper tissue penetration compared with first near-infrared (NIR-I) fluorescence imaging, NIR-II fluorescent SPNs have been widely designed and prepared. Among numerous structural units for semiconducting polymers (SPs) synthesis, thiadiazoloquinoxaline (TQ) has been proved as an efficient electron acceptor unit for constructing NIR-II fluorescent SPs by reacting with proper electron donor units. Herein, we summarize recent advances in TQ-based SPNs for NIR-II fluorescence imaging-guided cancer photothermal therapy. The preparation of TQ-based SPNs is first described. NIR-II fluorescence imaging-based and multimodal imaging-based phototheranostics are sequentially discussed. At last, the conclusion and future perspectives of this field are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA