Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
2.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898476

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto
3.
J Transl Med ; 21(1): 179, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879273

RESUMO

BACKGROUND: Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS: TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS: We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION: In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Receptor Gatilho 1 Expresso em Células Mieloides , Lipopolissacarídeos/farmacologia , Dinâmica Mitocondrial , Necroptose , Serina-Treonina Quinases TOR , Macrófagos , Inflamação
4.
J Cell Physiol ; 237(7): 3030-3043, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478455

RESUMO

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. First, our data showed that L-OPA1 expression was downregulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , GTP Fosfo-Hidrolases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , GTP Fosfo-Hidrolases/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Necroptose
5.
Mol Med ; 28(1): 85, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907805

RESUMO

BACKGROUND: Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated. This study aimed to investigate whether the activation of Fn14 exacerbated lipopolysaccharide (LPS)-induced ALI in mice. METHODS: In vivo, ALI was induced by intratracheal LPS-challenge combined with/without Fn14 receptor blocker aurintricarboxylic acid (ATA) treatment in C57BL/6J mice. Following LPS administration, the survival rate, lung tissue injury, inflammatory cell infiltration, inflammatory factor secretion, oxidative stress, and NLRP3 inflammasome activation were assessed. In vitro, primary murine macrophages were used to evaluate the underlying mechanism by which Fn14 activated the NLRP3 inflammasome. Lentivirus was used to silence Fn14 to observe its effect on the activation of NLRP3 inflammasome in macrophages. RESULTS: In this study, we found that Fn14 expression was significantly increased in the lungs of LPS-induced ALI mice. The inhibition of Fn14 with ATA downregulated the protein expression of Fn14 in the lungs and improved the survival rate of mice receiving a lethal dose of LPS. ATA also attenuated lung tissue damage by decreasing the infiltration of macrophages and neutrophils, reducing inflammation, and suppressing oxidative stress. Importantly, we found that ATA strongly inhibited the activation of NLRP3 inflammasome in the lungs of ALI mice. Furthermore, in vitro, TWEAK, a natural ligand of Fn14, amplified the activation of NLRP3 inflammasome in the primary murine macrophage. By contrast, inhibition of Fn14 with shRNA decreased the expression of Fn14, NLRP3, Caspase-1 p10, and Caspase-1 p20, and the production of IL-1ß and IL-18. Furthermore, the activation of Fn14 promoted the production of reactive oxygen species and inhibited the activation of Nrf2-HO-1 in activated macrophages. CONCLUSIONS: Our study first reports that the activation of Fn14 aggravates ALI by amplifying the activation of NLRP3 inflammasome. Therefore, blocking Fn14 may be a potential way to treat ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Receptor de TWEAK/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
J Cell Physiol ; 236(3): 1628-1637, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780450

RESUMO

Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.


Assuntos
Pneumopatias/enzimologia , NADPH Oxidase 4/metabolismo , Animais , Humanos , Pneumopatias/patologia , Modelos Biológicos , Transdução de Sinais
7.
J Cell Physiol ; 235(12): 9910-9921, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452554

RESUMO

Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1ß), and IL-1ß p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Epóxido Hidrolases/genética , Ácidos Graxos Monoinsaturados/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Ácido Araquidônico/química , Epóxido Hidrolases/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia
8.
Biochem Biophys Res Commun ; 523(4): 1020-1026, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973813

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global adult population, and no effective pharmacological treatment has been found. Products of arachidonic acid metabolism have been developed into a novel therapy for metabolic syndrome and diabetes. It has been demonstrated that protective actions of a novel dual cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) inhibitor, PTUPB, on the metabolic abnormalities. Here, we investigated the effects of PTUPB on hepatic steatosis in high-fat diet (HFD)-induced obese mice, as well as in hepatocytes in vitro. We found that PTUPB treatment reduced body weight, liver weight, liver triglyceride and cholesterol content, and the expression of lipolytic/lipogenic and lipid uptake related genes (Acc, Cd36, and Cidec) in HFD mice. In addition, PTUPB treatment arrested fibrotic progression with a decrease of collagen deposition and expression of Col1a1, Col1a3, and α-SMA. In vitro, PTUPB decreased palmitic acid-induced lipid deposition and downregulation of lipolytic/lipogenic genes (Acc and Cd36) in hepatocytes. Additionally, we found that PTUPB reduced the production of pro-inflammatory cytokines and suppressed the NLRP3 inflammasome activation in HFD mice and hepatocytes. In conclusion, dual inhibition of COX-2/sEH attenuates hepatic steatosis by inhibiting the NLRP3 inflammasome activation. PTUPB might be a promising potential therapy for liver steatosis associated with obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Epóxido Hidrolases/metabolismo , Inflamação/patologia , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Cell Biol Int ; 44(1): 98-107, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31329322

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM-induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM-induced expression of α-smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor-ß1, interleukin-1ß, and tumor necrosis factor-α in the lungs of BLM-stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM-induced murine model.

10.
J Cell Physiol ; 234(4): 4641-4654, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256406

RESUMO

Gluconic metabolic reprogramming, immune response, and inflammation are intimately linked. Glycolysis involves in the pathologic progress in acute and chronic inflammatory diseases. However, the involvement of glycolysis in the acute lung injury (ALI) is still unclear. This study investigated the role of glycolysis in an animal model of ALI. First, we found that lactate content in serum was remarkably increased in ALI patients and a murine model induced by intratracheal administration of lipopolysaccharide (LPS). The key proteins involving in glycolysis were robustly elevated, including HK2, PKM2, and HIF-1α. Intriguingly, inhibition of glycolysis by 2-deoxyglucose (2-DG) pronouncedly attenuated the lung tissue pathological injury, accumulation of neutrophil, oxidative stress, expression of proinflammatory factors in the lung of ALI mice induced by LPS. The 2-DG treatment also strongly suppressed the activation of the NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome. Furthermore, we investigated the role of glycolysis in the inflammatory response of primary murine macrophages activated by LPS in vitro. We found that the 2-DG treatment remarkably reduced the expression of proinflammatory factors induced by LPS, including tumor necrosis factor-α messenger RNA (mRNA), pro-interleukin (IL)-1ß mRNA, pro-IL-18 mRNA, NLRP3 mRNA, caspase-1 mRNA, and IL-1ß protein. Altogether, these data provide a novel link between gluconic metabolism reprogramming and uncontrolled inflammatory response in ALI. This study suggests glycolytic inhibition as an effective anti-inflammatory strategy in treating ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo
11.
Cell Biol Int ; 43(7): 770-780, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31026365

RESUMO

Acute respiratory distress syndrome (ARDS) is an acute, severe, and refractory pulmonary inflammation with high morbidity and mortality. Excessive activation of fibroblast during the fibroproliferative phase plays a pivotal role in the prognosis of ARDS. Our previous study demonstrated that the vasoactive intestinal peptide (VIP) is mediated by lentivirus attenuates lipopolysaccharide (LPS)-induced ARDS in a murine model, and VIP inhibits the release of interleukin-17A (IL-17A) from activation macrophages. However, the effects of VIP on the activation of murine fibroblast and expression of IL-17 receptor (IL-17R) in ARDS remain unclear. Here, a mouse model of ARDS was established by an intratracheal injection of LPS. We found that the gene expression of col3a1 and hydroxyproline contents in the lungs were significantly increased 24 h after LPS injection. IL-17RC rather than IL-17RA was increased in the lungs of mice with ARDS. In vitro, LPS activated NIH3T3 cells, which was suppressed by VIP in a dose-dependent manner. In detail, VIP reduced the hydroxyproline content and col3a1 messenger RNA induced by LPS in NIH3T3 cells, as well as the expression of α-smooth muscle actin. Furthermore, we found that VIP inhibited the expression of IL-17R in the lungs of mice with ARDS and NIH3T3 cells stimulated with LPS, which was partly inhibited by antagonists of protein kinase A and protein kinase C. Taken together, our results demonstrated that VIP inhibited the activation of fibroblast via downregulation of IL-17RC, which may contribute to the protective effects of VIP against ARDS in mice.


Assuntos
Fibroblastos/imunologia , Receptores de Interleucina/imunologia , Síndrome do Desconforto Respiratório/imunologia , Transdução de Sinais/efeitos dos fármacos , Peptídeo Intestinal Vasoativo , Actinas/metabolismo , Animais , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Hidroxiprolina/metabolismo , Lipopolissacarídeos/química , Masculino , Camundongos , Células NIH 3T3 , Inibidores de Proteínas Quinases/farmacologia , Receptores de Interleucina-17/imunologia , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/fisiologia
12.
Cell Tissue Res ; 363(2): 399-409, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26310139

RESUMO

Epoxyeicosatrienoic acids (EETs), the metabolites of arachidonic acid derived from the cytochrome P450 (CYP450) epoxygenases, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties and inhibition of sEH might provide protective effects against inflammatory fibrosis. We test the effects of a selected sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), on bleomycin-induced pulmonary fibrosis (PF) in mice. A mouse model of PF was established by intratracheal injection of bleomycin and TPPU was administered for 21 days after bleomycin injection. We found TPPU treatment improved the body weight loss and survival rate of bleomycin-stimulated mice. Histological examination showed that TPPU treatment alleviated bleomycin-induced inflammation and maintained the alveolar structure of the pulmonary tissues. TPPU also decreased the bleomycin-induced deposition of collagen and the expression of procollagen I mRNA in lung tissues of mice. TPPU decreased the transforming growth factor-ß1 (TGF-ß1), interleukin-1ß (IL-1ß) and IL-6 levels in the serum of bleomycin-stimulated mice. Furthermore, TPPU inhibited the proliferation and collagen synthesis of mouse fibroblasts and partially reversed TGF-ß1-induced α-smooth muscle actin expression. Our results indicate that the inhibition of sEH attenuates bleomycin-induced inflammation and collagen deposition and therefore prevents bleomycin-induced PF in a mouse model.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Compostos de Fenilureia/uso terapêutico , Piperidinas/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Eicosanoides/sangue , Eicosanoides/química , Epóxido Hidrolases/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Interleucina-1beta/sangue , Interleucina-6/sangue , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Fibrose Pulmonar/sangue , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fase S/efeitos dos fármacos , Solubilidade , Fator de Crescimento Transformador beta1/sangue , Redução de Peso/efeitos dos fármacos
13.
Int J Exp Pathol ; 96(4): 269-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25944684

RESUMO

Interleukin (IL)-17A is a pro-inflammatory cytokine that markedly enhances inflammatory responses in the lungs by recruiting neutrophils and interacting with other pro-inflammatory mediators. Reducing the expression of IL-17A could attenuate inflammation in the lungs. However, whether VIP exerts its anti-inflammatory effects by regulating the expression of IL-17A has remained unclear. Here, we show that there is a remarkable increase of IL-17A in bronchoalveolar lavage fluid (BALF) and lung tissue of mice with acute lung injury (ALI). Moreover, lipopolysaccharides (LPS) stimulated elevated expression of IL-17A, which was evident by the enhanced levels of mRNA and protein observed. Furthermore, we also found that VIP inhibited LPS-mediated IL-17A expression in a time- and dose-dependent manner in an in vitro model of ALI and that this process might be mediated via the phosphokinase A (PKA) and phosphokinase C (PKC) pathways. Taken together, our results demonstrated that VIP might be an effective protector during ALI by suppressing IL-17A expression.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Interleucina-17/biossíntese , Macrófagos/metabolismo , Proteína Quinase C/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
14.
Pharmacology ; 96(5-6): 233-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382046

RESUMO

Platelet-activating factor (PAF), a bioactive phospholipid, plays an important role in the integrity of the cellular membrane structure, and is involved in the pathogenesis of myocardial ischemia/reperfusion (IR) injuries. In this study, we tested the hypothesis that blockage of PAF receptor by BN 52021 (Ginkgolide B) can prevent IR-induced degradation of the myocardial membrane phospholipid, and deterioration of the cardiac function. Rat hearts in situ were subjected to 5 min ischemia and followed by 10 min reperfusion. Cardiac performances during periods of ischemia and reperfusion were monitored, and the amount of membrane phospholipids was analyzed. Myocardial total phospholipids, phosphatidylcholine, and phosphatidylethanolamine were decreased significantly in ischemia-reperfusion rat hearts compared with those of sham-operated rat hearts. Degradation of the membrane phospholipid was accompanied by the deterioration of cardiac functions and increase in serum lactate dehydrogenase (LDH) activity. BN 52021 (15 mg/kg), given by intravenous infusion 10 min prior to the left anterior descending coronary artery occlusion, reduced IR-related degradation of the myocardial phospholipids, the activity of serum LDH, and was concomitant with improvement of cardiac function. Furthermore, we demonstrated that the production of PAF was increased and BN 52021 decreased cellular damage in cultured anoxic cardiomyocytes. These results indicated that PAF antagonist BN 52021 has a protective effect against IR-induced myocardial dysfunction and degradation of the membrane phospholipids.


Assuntos
Membrana Celular/efeitos dos fármacos , Ginkgolídeos/uso terapêutico , Lactonas/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Fator de Ativação de Plaquetas/antagonistas & inibidores , Animais , Hipóxia Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Ginkgolídeos/administração & dosagem , Infusões Intravenosas , L-Lactato Desidrogenase/sangue , Lactonas/administração & dosagem , Masculino , Potenciais da Membrana/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ratos Wistar
15.
Int J Biol Sci ; 20(5): 1927-1946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481801

RESUMO

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.


Assuntos
Inflamassomos , Complicações Cognitivas Pós-Operatórias , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA Mitocondrial/metabolismo , Sevoflurano , Doenças Neuroinflamatórias , Nucleotidiltransferases/metabolismo
16.
Life Sci ; 332: 122121, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742737

RESUMO

Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.


Assuntos
Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Peptídeo Intestinal Vasoativo , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Peptídeo Intestinal Vasoativo/uso terapêutico , Pneumopatias/tratamento farmacológico
17.
Heliyon ; 9(6): e17361, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416635

RESUMO

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of pulmonary fibrosis (PF). However, the exact mechanism underlying AEC senescence during PF remains poorly understood. Here, we reported an unrecognized mechanism for AEC senescence during PF. We found that, in bleomycin (BLM)-induced PF mice, the expressions of isocitrate dehydrogenase 3α (Idh3α) and citrate carrier (CIC) were significantly down-regulated in the lungs, which could result in mitochondria citrate (citratemt) accumulation in our previous study. Notably, the down-regulation of Idh3α and CIC was related to senescence. The mice with AECs-specific Idh3α and CIC deficiency by adenoviral vector exhibited spontaneous PF and senescence in the lungs. In vitro, co-inhibition of Idh3α and CIC with shRNA or inhibitors triggered the senescence of AECs, indicating that accumulated citratemt triggers AEC senescence. Mechanistically, citratemt accumulation impaired the mitochondrial biogenesis of AECs. In addition, the senescence-associated secretory phenotype from senescent AECs induced by citratemt accumulation activated the proliferation and transdifferentiation of NIH3T3 fibroblasts into myofibroblasts. In conclusion, we show that citratemt accumulation would be a novel target for protection against PF that involves senescence.

18.
Int J Biol Sci ; 19(1): 242-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594089

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Animais , Camundongos , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos NOD , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Glicólise , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
19.
Redox Biol ; 63: 102765, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269686

RESUMO

Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence. In vitro, we found that 14,15-EET content was significantly decreased in senescent AECs. Exogenous EETs supplementation, overexpression of CYP2J2, or inhibition of EETs degrading enzyme soluble epoxide hydrolase (sEH) to increase EETs alleviated AECs' senescence. Mechanistically, 14,15-EET promoted the expression of Trim25 to ubiquitinate and degrade Keap1 and promoted Nrf2 to enter the nucleus to exert an anti-oxidant effect, thereby inhibiting endoplasmic reticulum stress (ERS) and alleviating AEC senescence. Furthermore, in D-galactose (D-gal)-induced premature aging mouse model, inhibiting the degradation of EETs by Trifluoromethoxyphenyl propionylpiperidin urea (TPPU, an inhibitor of sEH) significantly inhibited the protein expression of p16, p21, and γH2AX. Meanwhile, TPPU reduced the degree of age-related pulmonary fibrosis in mice. Our study has confirmed that EETs are novel anti-senescence substances for AECs, providing new targets for the treatment of chronic lung diseases.


Assuntos
Células Epiteliais Alveolares , Senescência Celular , Eicosanoides , Estresse do Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/fisiologia , Eicosanoides/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fibrose Pulmonar , Senescência Celular/efeitos dos fármacos
20.
Biomed Pharmacother ; 169: 115937, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38007934

RESUMO

Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored. In the present study, we observed that bleomycin (BLM) induced enhanced mitophagy accompanied by increased mitochondrial ROS (mito-ROS) content in the murine alveolar epithelial cell line MLE12. While EETs reduced BLM-induced mitophagy and mito-ROS content in MLE12 cells, and the mechanism was related to the regulation of NOX4/Nrf2-mediated redox imbalance. Furthermore, we found that inhibition of EETs degradation could significantly inhibit mitophagy and regulate NOX4/Nrf2 balance to exert anti-oxidant effects in D-galactose-induced premature aging mice. Collectively, these findings may provide new ideas for treating age-related pulmonary diseases by targeting EETs to improve mitochondrial dysfunction and reduce oxidative stress.


Assuntos
Células Epiteliais Alveolares , Pneumopatias , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Senescência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA