Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gene ; 778: 145460, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33515727

RESUMO

BACKGROUND: Traditional Chinese medicine manipulation (TCMM) is often used to treat human skeletal muscle injury, but its mechanism remains unclear due to difficulty standardizing and quantifying manipulation parameters. METHODS: Here, dexamethasone sodium phosphate (DSP) was utilized to induce human skeletal muscle cell (HSkMC) impairments. Cells in a three-dimensional environment were divided into the control normal group (CNG), control injured group (CIG) and rolling manipulation group (RMG). The RMG was exposed to intermittent pressure imitating rolling manipulation (IPIRM) of TCMM via the FX­5000™ compression system. Skeletal muscle damage was assessed via the cell proliferation rate, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and creatine kinase (CK) activity. Isobaric tagging for relative and absolute protein quantification (iTRAQ) and bioinformatic analysis were used to evaluate differentially expressed proteins (DEPs). RESULTS: Higher-pressure IPIRM ameliorated the skeletal muscle cell injury induced by 1.2 mM DSP. Thirteen common DEPs after IPIRM were selected. Key biological processes, molecular functions, cellular components, and pathways were identified as mechanisms underlying the protective effect of TCMM against skeletal muscle damage. Some processes (response to oxidative stress, response to wounding, response to stress and lipid metabolism signalling pathways) were related to skeletal muscle cell injury. Western blotting for 4 DEPs confirmed the reliability of iTRAQ. CONCLUSIONS: Higher-pressure IPIRM downregulated the CD36, Hsp27 and FABP4 proteins in oxidative stress and lipid metabolism pathways, alleviating excessive oxidative stress and lipid metabolism disorder in injured HSkMCs. The techniques used in this study might provide novel insights into the mechanism of TCMM.


Assuntos
Antígenos CD36/metabolismo , Dexametasona/análogos & derivados , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Fibras Musculares Esqueléticas/citologia , Manipulações Musculoesqueléticas/métodos , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Células Cultivadas , Dexametasona/efeitos adversos , Regulação para Baixo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Medicina Tradicional Chinesa , Modelos Biológicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA