Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(29): 32681-32688, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32578975

RESUMO

Knitted iron phthalocyanine-based porous polymer networks (K-FePcs) were prepared in a single step using solvent-knitting strategies with commercial iron phthalocyanine as a building monomer. The incorporation of different aryl comonomers (biphenyl and 1,2,4,5-tetraphenylbenzene) to FePc allowed quantitative yields, high porosities, and excellent ORR activity. The reversible Fe(III)/Fe(II) redox potential of FeN4 centers of the knitted polymer networks in N2-saturated electrolyte solution (i.e., ∼0.8 V vs RHE) were shown as good descriptors of their ORR activity. K-FePc2Ph presented the highest amount of FeN4 active sites and an adequate degree of steric hindrance to maintain the isolation between catalytically active sites. Moreover, it displayed comparable current density limits and superior mass activity and half-wave potential (i.e., 0.88 V vs RHE) than those of 20% Pt/C benchmark catalyst, while keeping higher stability toward methanol oxidation. K-FePc2Ph can be an interesting alternative to Pt-based ORR electrocatalysts.

2.
Adv Mater ; 31(39): e1903418, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31392770

RESUMO

Ionic liquids (ILs) are being widely used in many diverse areas of social interest, including catalysis, electrochemistry, etc. However, issues related to hygroscopicity of many ILs and the toxic and/or nonbiodegradable features of some of them limit their practical use. Developing materials capable of IL recovery from aqueous media and dehydration, thus allowing their recycling and subsequent reutilization, in a single and efficient process still poses a major challenge. Herein, electrically conductive aerogels composed of carbon nanofibers (CNFs) with remarkable superhydrophobic features are prepared. CNF-based 3D aerogels are prepared through a cryogenic process, so called ice-segregation-induced self-assembly (ISISA) consisting of the unidirectional immersion of an aqueous chitosan (CHI) solution also containing CNFs in suspension into a liquid nitrogen bath, and subsequent freeze-drying. The CNF-based 3D aerogels prove effective for absorption of ILs from aqueous biphasic systems and recovery with quite low water contents just through a single process of filtration. Moreover, the electrical conductivity of CNF-based 3D aerogels is particularly interesting to treat highly viscous ILs because the Joule effect allows not only shortening of the absorption process but also enhancement of the flux rate when operating in flow-through conditions.

3.
Nanoscale ; 11(21): 10229-10238, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31049502

RESUMO

Ultrasensitive and flexible pressure sensors that can perceive and respond to environmental stimuli have attracted considerable attention due to their potential applications in wearable electronics and electronic skin devices. Here, we report a simple and low-cost strategy to fabricate high-performance pressure sensors via constructing a unique conductive/insulating/conductive sandwich-like porous structure (SPS). Interpenetration of the conductive graphene network throughout the porous insulating interlayer produces a highly efficient transition from the non-conductive to the conductive state. Consequently, the SPS sensors exhibit an extreme resistance-switching behavior (resistance change of >105 at 30 kPa), high sensitivity (∼0.67 kPa-1, <1.5 kPa), fast response/recovery time (∼10 and ∼16 ms) and outstanding mechanical stability. Such SPS pressure sensors are applicable for detecting various mechanical deformation modes (press, bend and torsion) and different stress/strain levels (from gait feature, finger/wrist/elbow movement to breathing monitoring and real-time pulse wave), providing a new concept of device design for wearable electronic applications.

4.
ACS Appl Mater Interfaces ; 11(27): 24493-24503, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199609

RESUMO

The elimination of small amounts of water from alcohols is by no means a trivial issue in many practical applications like, for instance, the dehumidification of biocombustibles. The use of carbonaceous materials as sorbents has been far less explored than that of other materials because their hydrophobic character has typically limited their water uptake. Herein, we designed a synthetic process based on the use of eutectic mixtures that allowed the homogeneous dispersion of graphene oxide (GO) in the liquid containing the carbon precursor, e.g., furfuryl alcohol. Thus, after polymerization and a subsequent carbonization process, we were able to obtain porous carbon-GO composites where the combination of pore diameter and surface hydrophilicity provided a remarkable capacity for water uptake but extremely low methanol and ethanol uptake along the entire range of relative pressures evaluated in this work. Both the neat water uptake and the uptake difference between water and either methanol or ethanol of our carbon-GO composites were similar or eventually better than the uptake previously reported for other materials, also exhibiting preferential water-to-alcohol adsorption, e.g., porous coordination polymers, metal-organic frameworks, polyoxometalates, and covalent two-dimensional nanosheets embedded in a polymer matrix. Moreover, water versus alcohol uptake was particularly remarkable at low partial pressures in our carbon-GO composites.

5.
Nanoscale ; 10(31): 14788-14811, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30052244

RESUMO

Motivated by the unique structure and outstanding properties of graphene, three-dimensional (3D) graphene-based polymer nanocomposites (3D-GPNCs) are considered as new generation materials for various multi-functional applications. This review presents an overview of the preparation, properties and applications of 3D-GPNCs. Three main approaches for fabricating 3D-GPNCs, namely 3D graphene based template, polymer particle/foam template, and organic molecule cross-linked graphene, are introduced. A thorough investigation and comparison of the mechanical, electrical and thermal properties of 3D-GPNCs are performed and discussed to understand their structure-property relationship. Various potential applications of 3D-GPNCs, including energy storage and conversion, electromagnetic interference shielding, oil/water separation, and sensors, are reviewed. Finally, the current challenges and outlook of these emerging 3D-GPNC materials are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA