Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Cell ; 148(4): 716-26, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22341444

RESUMO

Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling, and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hypermethylation causes ROS-dependent activation of AMP kinase and the proapoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo, as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.


Assuntos
Surdez/metabolismo , Modelos Animais de Doenças , Fator de Transcrição E2F1/metabolismo , Animais , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Orelha Interna/patologia , Cistos Glanglionares/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Neurônios/patologia , RNA Ribossômico/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Trends Genet ; 39(2): 125-139, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36137834

RESUMO

Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.


Assuntos
RNA Longo não Codificante , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Circular/genética , RNA Longo não Codificante/metabolismo
3.
J Biol Chem ; 300(5): 107235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552739

RESUMO

Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.


Assuntos
Surdez , Mitocôndrias , RNA de Transferência de Fenilalanina , Humanos , Autofagia , Surdez/genética , Surdez/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA de Transferência de Fenilalanina/genética
4.
Hum Mol Genet ; 32(2): 231-243, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35947995

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Hereditária de Leber , Animais , Células Ganglionares da Retina , Atrofia Óptica Hereditária de Leber/genética , NADH Desidrogenase/genética , DNA Mitocondrial/genética , Mutação
5.
Hum Mol Genet ; 32(9): 1539-1551, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611011

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted eye disease due to the degeneration of retinal ganglion cells (RGCs). Mitochondrial 11778G > A mutation is the most common LHON-associated mitochondrial DNA (mtDNA) mutation. Our recent studies demonstrated some LHON families manifested by synergic interaction between m.11778G > A mutation and YARS2 allele (c.572G > T, p.Gly191Val) encoding mitochondrial tyrosyl-tRNA synthetase. However, the RGC-specific effects of LHON-associated mtDNA mutations remain elusive and there is no highly effective therapy for LHON. Here, we generated patients-derived induced pluripotent stem cells (iPSCs) from fibroblasts derived from a Chinese LHON family (both m.11778G > A and c.572G > T mutations, only m.11778G > A mutation, and control subject). The c.572G > T mutation in iPSC lines from a syndromic individual was corrected by CRISPR/Cas9. Those iPSCs were differentiated into neural progenitor cells and subsequently induced RGC-like cells using a stepwise differentiation procedure. Those RGC-like cells derived from symptomatic individual harboring both m.11778G > A and c.572G > T mutations exhibited greater defects in neuronal differentiation, morphology including reduced area of soma, numbers of neurites and shortened length of axons, electrophysiological properties than those in cells bearing only m.11778G > A mutation. Furthermore, these RGC-like cells revealed more drastic reductions in oxygen consumption rates, levels of mitochondrial ATP and increasing productions of reactive oxygen species than those in other cell models. These mitochondrial dysfunctions promoted the apoptotic process for RGC degenerations. Correction of YARS2 c.572G > T mutation rescued deficiencies of patient-derived RGC-like cells. These findings provide new insights into pathophysiology of LHON arising from RGC-specific mitochondrial dysfunctions and step toward therapeutic intervention for this disease.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Tirosina-tRNA Ligase , Humanos , Alelos , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Mitocôndrias/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/fisiopatologia , Atrofia Óptica Hereditária de Leber/terapia , Tirosina-tRNA Ligase/genética
6.
EMBO J ; 40(8): e106283, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33665835

RESUMO

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Estresse Oxidativo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Células Cultivadas , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ligação Proteica
7.
Hum Mol Genet ; 31(18): 3068-3082, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35467742

RESUMO

Sensorineural hearing loss often results from damaged or deficient inner ear hair cells. Mitochondrial 12S rRNA 1555A>G mutation has been associated with hearing loss in many families. The m.1555A>G mutation is a primary factor underlying the development of hearing loss and TRMU allele (c.28G>T, p.Ala10Sser) encoding tRNA thiouridylase interact with m.1555A>G mutation to cause hearing loss. However, the tissue specificity of mitochondrial dysfunction remains elusive and there is no highly effective therapy for mitochondrial deafness. We report here the generation of induced pluripotent stem cells (iPSCs) from lymphoblastoid cell lines derived from members of an Arab-Israeli family (asymptomatic individual carrying only m.1555A>G mutation, symptomatic individual bearing both m.1555A>G and c.28G>T mutations, and control subject). The c.28G>T mutation in iPSC lines from a hearing-impaired subject was corrected by CRISPR/Cas9. These iPSCs were differentiated into otic epithelial progenitor (OEP) cells and subsequent inner ear hair cell (HC)-like cells. The iPSCs bearing m.1555A>G mutation exhibited mildly deficient differentiation into OEP and resultant HC-like cells displayed mild defects in morphology and electrophysiological properties. Strikingly, those HC-like cells harboring m.1555A>G and TRMU c.28G>T mutations displayed greater defects in the development, morphology and functions than those in cells bearing only m.1555A>G mutation. Transcriptome analysis of patients-derived HC-like cells revealed altered expressions of genes vital for mechanotransduction of hair cells. Genetic correction of TRMU c.28G>T mutation yielded morphologic and functional recovery of patient derived HC-like cells. These findings provide new insights into pathophysiology of maternally inherited hearing loss and a step toward therapeutic interventions for this disease.


Assuntos
Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Alelos , DNA Mitocondrial/genética , Cabelo/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mecanotransdução Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , RNA Ribossômico/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética
8.
Hum Mol Genet ; 31(19): 3299-3312, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567411

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14484T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484T > C mutation in the pathogenesis of LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Trifosfato de Adenosina , Anexina A5/genética , Apoptose/genética , Caspases , Citocromos c , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Homeostase/genética , Humanos , Mitofagia/genética , Mutação , NADH Desidrogenase , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Proteínas Quinases/genética , RNA , RNA Mensageiro , RNA Mitocondrial , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases/genética , Proteína X Associada a bcl-2/genética
9.
Nucleic Acids Res ; 50(16): 9453-9469, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039763

RESUMO

In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5' end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5' end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.


Assuntos
DNA Mitocondrial , Surdez , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA de Transferência de Cisteína/metabolismo , Surdez/genética , Surdez/metabolismo , Mitocôndrias/metabolismo , Mutação , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/metabolismo
10.
Nucleic Acids Res ; 50(16): 9368-9381, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018806

RESUMO

Pseudouridine (Ψ) at position 55 in tRNAs plays an important role in their structure and function. This modification is catalyzed by TruB/Pus4/Cbf5 family of pseudouridine synthases in bacteria and yeast. However, the mechanism of TRUB family underlying the formation of Ψ55 in the mammalian tRNAs is largely unknown. In this report, the CMC/reverse transcription assays demonstrated the presence of Ψ55 in the human mitochondrial tRNAAsn, tRNAGln, tRNAGlu, tRNAPro, tRNAMet, tRNALeu(UUR) and tRNASer(UCN). TRUB1 knockout (KO) cell lines generated by CRISPR/Cas9 technology exhibited the loss of Ψ55 modification in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro but did not affect other 18 mitochondrial tRNAs. An in vitro assay revealed that recombinant TRUB1 protein can catalyze the efficient formation of Ψ55 in tRNAAsn and tRNAGln, but not in tRNAMet and tRNAArg. Notably, the overexpression of TRUB1 cDNA reversed the deficient Ψ55 modifications in these tRNAs in TRUB1KO HeLa cells. TRUB1 deficiency affected the base-pairing (18A/G-Ψ55), conformation and stability but not aminoacylation capacity of these tRNAs. Furthermore, TRUB1 deficiency impacted mitochondrial translation and biogenesis of oxidative phosphorylation system. Our findings demonstrated that human TRUB1 is a highly conserved mitochondrial pseudouridine synthase responsible for the Ψ55 modification in the mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.


Assuntos
Transferases Intramoleculares , RNA de Transferência de Ácido Glutâmico , Animais , Humanos , RNA de Transferência de Glutamina , RNA de Transferência de Prolina , RNA de Transferência de Asparagina , RNA de Transferência de Metionina , Células HeLa , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Pseudouridina/genética , Pseudouridina/metabolismo , RNA de Transferência/metabolismo , Mamíferos/genética
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 184-193, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38562030

RESUMO

OBJECTIVES: To investigate the role of m.4435A>G and YARS2 c.572G>T (p.G191V) mutations in the development of essential hypertension. METHODS: A hypertensive patient with m.4435A>G and YARS2 p.G191V mutations was identified from previously collected mitochondrial genome and exon sequencing data. Clinical data were collected, and a molecular genetic study was conducted in the proband and his family members. Peripheral venous blood was collected, and immortalized lymphocyte lines constructed. The mitochondrial transfer RNA (tRNA), mitochondrial protein, adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) in the constructed lymphocyte cell lines were measured. RESULTS: Mitochondrial genome sequencing showed that all maternal members carried a highly conserved m.4435A>G mutation. The m.4435A>G mutation might affect the secondary structure and folding free energy of mitochondrial tRNA and change its stability, which may influence the anticodon ring structure. Compared with the control group, the cell lines carrying m.4435A>G and YARS2 p.G191V mutations had decreased mitochondrial tRNA homeostasis, mitochondrial protein expression, ATP production and MMP levels, as well as increased ROS levels (all P<0.05). CONCLUSIONS: The YARS2 p.G191V mutation aggravates the changes in mitochondrial translation and mitochondrial function caused by m.4435A>G through affecting the steady-state level of mitochondrial tRNA and further leads to cell dysfunction, indicating that YARS2 p.G191V and m.4435A>G mutations have a synergistic effect in this family and jointly participate in the occurrence and development of essential hypertension.


Assuntos
Hipertensão Essencial , Mutação , RNA de Transferência de Metionina , Tirosina-tRNA Ligase , Feminino , Humanos , Masculino , Hipertensão Essencial/genética , Genoma Mitocondrial , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Espécies Reativas de Oxigênio/metabolismo , RNA de Transferência/genética , RNA de Transferência de Metionina/genética , Tirosina-tRNA Ligase/genética
12.
J Biomed Sci ; 30(1): 82, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737178

RESUMO

Mitochondria are essential organelles for cellular metabolism and physiology in eukaryotic cells. Human mitochondria have their own genome (mtDNA), which is maternally inherited with 37 genes, encoding 13 polypeptides for oxidative phosphorylation, and 22 tRNAs and 2 rRNAs for translation. mtDNA mutations are associated with a wide spectrum of degenerative and neuromuscular diseases. However, the pathophysiology of mitochondrial diseases, especially for threshold effect and tissue specificity, is not well understood and there is no effective treatment for these disorders. Especially, the lack of appropriate cell and animal disease models has been significant obstacles for deep elucidating the pathophysiology of maternally transmitted diseases and developing the effective therapy approach. The use of human induced pluripotent stem cells (iPSCs) derived from patients to obtain terminally differentiated specific lineages such as inner ear hair cells is a revolutionary approach to deeply understand pathogenic mechanisms and develop the therapeutic interventions of mitochondrial disorders. Here, we review the recent advances in patients-derived iPSCs as ex vivo models for mitochondrial diseases. Those patients-derived iPSCs have been differentiated into specific targeting cells such as retinal ganglion cells and eventually organoid for the disease modeling. These disease models have advanced our understanding of the pathophysiology of maternally inherited diseases and stepped toward therapeutic interventions for these diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Mutação , Mitocôndrias/genética , Diferenciação Celular , DNA Mitocondrial/genética
13.
J Biomed Sci ; 30(1): 63, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537557

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mutations in mitochondrial DNA. However, there is no effective treatment for this disease. LHON-linked ND6 14484T > C (p.M64V) mutation caused complex I deficiency, diminished ATP production, increased production of reactive oxygen species (ROS), elevated apoptosis, and impaired mitophagy. Here, we investigated if the allotopic expression of human mitochondrial ND6 transgene corrected the mitochondrial dysfunctions due to LHON-associated m.14484T > C mutation. METHODS: Nucleus-versions of ND6 was generated by changing 6 non-universal codons with universal codons and added to mitochondrial targeting sequence of COX8. Stable transfectants were generated by transferring human ND6 cDNA expressed in a pCDH-puro vector into mutant cybrids carrying the m.14484T > C mutation and control cybrids. The effect of allotopic expression of ND6 on oxidative phosphorylation (OXPHOS) was evaluated using Blue Native gel electrophoresis and extracellular flux analyzer. Assessment of ROS production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analyses for apoptosis and mitophagy were undertaken via flow cytometry, TUNEL and immunofluorescence assays. RESULTS: The transfer of human ND6 into the cybrids carrying the m.14484T > C mutation raised the levels of ND6, ND1 and ND4L but did not change the levels of other mitochondrial proteins. The overexpression of ND6 led to 20~23% increases in the assembly and activity of complex I, and ~ 53% and ~ 33% increases in the levels of mitochondrial ATP and ΔΨm in the mutant cybrids bearing m.14484T > C mutation. Furthermore, mutant cybrids with overexpression of ND6 exhibited marked reductions in the levels of mitochondrial ROS. Strikingly, ND6 overexpression markedly inhibited the apoptosis process and restored impaired mitophagy in the cells carrying m.14484T > C mutation. However, overexpression of ND6 did not affect the ND6 level and mitochondrial functions in the wild-type cybrids, indicating that this ND6 level appeared to be the maximum threshold level to maintain the normal cell function. CONCLUSION: We demonstrated that allotopic expression of nucleus-versions of ND6 restored complex I, apoptosis and mitophagy deficiencies caused by the m.14484T > C mutation. The restoration of m.14484T > C mutation-induced mitochondrial dysfunctions by overexpression of ND6 is a step toward therapeutic interventions for LHON and mitochondrial diseases.


Assuntos
NADH Desidrogenase , Atrofia Óptica Hereditária de Leber , Humanos , Trifosfato de Adenosina , Apoptose/genética , DNA Mitocondrial/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Espécies Reativas de Oxigênio , NADH Desidrogenase/genética
14.
Nucleic Acids Res ; 49(22): 13108-13121, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878141

RESUMO

Mutations in genes encoding mitochondrial aminoacyl-tRNA synthetases are linked to diverse diseases. However, the precise mechanisms by which these mutations affect mitochondrial function and disease development are not fully understood. Here, we develop a Drosophila model to study the function of dFARS2, the Drosophila homologue of the mitochondrial phenylalanyl-tRNA synthetase, and further characterize human disease-associated FARS2 variants. Inactivation of dFARS2 in Drosophila leads to developmental delay and seizure. Biochemical studies reveal that dFARS2 is required for mitochondrial tRNA aminoacylation, mitochondrial protein stability, and assembly and enzyme activities of OXPHOS complexes. Interestingly, by modeling FARS2 mutations associated with human disease in Drosophila, we provide evidence that expression of two human FARS2 variants, p.G309S and p.D142Y, induces seizure behaviors and locomotion defects, respectively. Together, our results not only show the relationship between dysfunction of mitochondrial aminoacylation system and pathologies, but also illustrate the application of Drosophila model for functional analysis of human disease-causing variants.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Mitocondriais/genética , Mutação , Fenilalanina-tRNA Ligase/genética , RNA de Transferência/genética , Convulsões/genética , Animais , Linhagem Celular , Deficiências do Desenvolvimento/enzimologia , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Técnicas de Silenciamento de Genes , Humanos , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/deficiência , Fosforilação Oxidativa , Fenilalanina-tRNA Ligase/deficiência , RNA de Transferência/metabolismo , Convulsões/enzimologia , Aminoacilação de RNA de Transferência
15.
Nucleic Acids Res ; 49(8): 4689-4704, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836087

RESUMO

Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Coração/embriologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cardiomiopatia Hipertrófica/fisiopatologia , Perfilação da Expressão Gênica , Coração/fisiopatologia , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Poliadenilação/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Aminoacilação de RNA de Transferência/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
Nucleic Acids Res ; 49(2): 1075-1093, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33398350

RESUMO

Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3' adjacent to the tRNA's anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5' end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação Puntual , RNA de Transferência de Isoleucina/genética , Trifosfato de Adenosina/biossíntese , Adulto , Proteínas Arqueais/metabolismo , Autofagia , Sequência de Bases , Linhagem Celular , DNA Mitocondrial/genética , Etnicidade/genética , Feminino , Pleiotropia Genética , Perda Auditiva Neurossensorial/etnologia , Humanos , Isoleucina/metabolismo , Masculino , Herança Materna , Potencial da Membrana Mitocondrial , Methanocaldococcus/enzimologia , Metilação , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Linhagem , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/metabolismo , Aminoacilação de RNA de Transferência , Adulto Jovem , tRNA Metiltransferases/metabolismo
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(4): 510-517, 2023 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37643984

RESUMO

OBJECTIVES: To explore the role of mitochondrial CYB 15024G>A mutation in the development of essential hypertension. METHODS: Mitochondrial genome sequences of hypertensive patients were obtained from previous studies. Clinical and genetic data of a hypertensive patient with mitochondrial CYB 15024G>A mutation and its pedigree were analyzed. Lymphocytes derived from patient and family members were transformed into immortalized lymphoblastoid cell lines, and the levels of adenosine triphosphate (ATP), mitochondrial membrane potential and intracellular reactive oxygen species (ROS) were detected. RESULTS: The penetrance of this essential hypertension family was 42.9%, and the age of onset was 46-68 years old. Mitochondrial genome sequencing results showed that all maternal members carried a highly conserved mitochondrial CYB 15024G>A mutation. This mutation could affect the free energy of mitochondrial CYB for secondary and tertiary structure and protein folding, thereby changing its structural stability and the structure of the electron transfer function area around the mutation site. Compared with the control, the cell line carrying the mitochondrial CYB 15024G>A mutation showed significantly decreased levels of mitochondrial CYB, ATP and mitochondrial membrane potential, and increased levels of ROS (P<0.01). CONCLUSIONS: Mitochondrial CYB 15024G>A mutation may affect the structure of respiratory chain subunits and mitochondrial function, leading to cell dysfunction, which suggests that the mutation may play a synergistic role in essential hypertension.


Assuntos
Trifosfato de Adenosina , Humanos , Pessoa de Meia-Idade , Idoso , Espécies Reativas de Oxigênio , Hipertensão Essencial/genética , Linhagem Celular , Mutação
18.
J Biol Chem ; 297(2): 100960, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265302

RESUMO

Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.


Assuntos
Mitocôndrias , RNA de Transferência , Animais , Núcleo Celular/metabolismo , Camundongos , Especificidade de Órgãos , Fosforilação Oxidativa , Processamento Pós-Transcricional do RNA
19.
J Biol Chem ; 296: 100437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610547

RESUMO

Mitochondria maintain a distinct pool of ribosomal machinery, including tRNAs and tRNAs activating enzymes, such as mitochondrial tyrosyl-tRNA synthetase (YARS2). Mutations in YARS2, which typically lead to the impairment of mitochondrial protein synthesis, have been linked to an array of human diseases including optic neuropathy. However, the lack of YARS2 mutation animal model makes us difficult to elucidate the pathophysiology underlying YARS2 deficiency. To explore this system, we generated YARS2 knockout (KO) HeLa cells and zebrafish using CRISPR/Cas9 technology. We observed the aberrant tRNATyr aminoacylation overall and reductions in the levels in mitochondrion- and nucleus-encoding subunits of oxidative phosphorylation system (OXPHOS), which were especially pronounced effects in the subunits of complex I and complex IV. These deficiencies manifested the decreased levels of intact supercomplexes overall. Immunoprecipitation assays showed that YARS2 bound to specific subunits of complex I and complex IV, suggesting the posttranslational stabilization of OXPHOS. Furthermore, YARS2 ablation caused defects in the stability and activities of OXPHOS complexes. These biochemical defects could be rescued by the overexpression of YARS2 cDNA in the YARS2KO cells. In zebrafish, the yars2KO larva conferred deficient COX activities in the retina, abnormal mitochondrial morphology, and numbers in the photoreceptor and retinal ganglion cells. The zebrafish further exhibited the retinal defects affecting both rods and cones. Vision defects in yars2KO zebrafish recapitulated the clinical phenotypes in the optic neuropathy patients carrying the YARS2 mutations. Our findings highlighted the critical role of YARS2 in the stability and activity of OXPHOS and its pathological consequence in vision impairments.


Assuntos
Proteínas Mitocondriais , Fosforilação Oxidativa , Retina/enzimologia , Tirosina-tRNA Ligase/deficiência , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Sistemas CRISPR-Cas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Tirosina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Biol Chem ; 297(1): 100816, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023389

RESUMO

Mitochondrial tRNA 3'-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3'-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3'-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3'-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3'-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3'-end metabolism deficiency.


Assuntos
Mitocôndrias/metabolismo , RNA de Transferência de Alanina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Sequência de Bases , Citocromos c/metabolismo , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Mutação/genética , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Mitocondrial/genética , RNA de Transferência de Alanina/química , Espécies Reativas de Oxigênio/metabolismo , Aminoacilação de RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA