Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2400200121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662550

RESUMO

Traditional metallic glasses (MGs), based on one or two principal elements, are notoriously known for their lack of tensile ductility at room temperature. Here, we developed a multiprincipal element MG (MPEMG), which exhibits a gigapascal yield strength, significant strain hardening that almost doubles its yield strength, and 2% uniform tensile ductility at room temperature. These remarkable properties stem from the heterogeneous amorphous structure of our MPEMG, which is composed of atoms with significant size mismatch but similar atomic fractions. In sharp contrast to traditional MGs, shear banding in our glass triggers local elemental segregation and subsequent ordering, which transforms shear softening to hardening, hence resulting in shear-band self-halting and extensive plastic flows. Our findings reveal a promising pathway to design stronger, more ductile glasses that can be applied in a wide range of technological fields.

2.
Soft Matter ; 20(7): 1565-1572, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38270340

RESUMO

It is natural to expect that small particles in binary mixtures move faster than large ones. However, in binary glass-forming liquids with soft-core particle interactions, we observe the counterintuitive dynamic reversal between large and small particles along with the increase of pressure by performing molecular dynamics simulations. The structural relaxation (dynamic heterogeneity) of small particles is faster (weaker) than large ones at low pressures, but becomes slower (stronger) above a crossover pressure. In contrast, this dynamic reversal never happens in glass-forming liquids with hard-core interactions. We find that the difference of the effective melting temperatures felt by large and small particles can be used to understand the dynamic reversal. In binary mixtures, we derive effective melting temperatures of large and small particles simply from the conversion of units and find that particles with a higher effective melting temperature usually undergo a slower and more heterogeneous relaxation. The presence (absence) of the dynamic reversal in soft-core (hard-core) systems is simply due to the non-monotonic (monotonic) behavior of the melting temperature as a function of pressure. Interestingly, by manipulating the relative softness between large and small particles, we obtain a special case of soft-core systems, in which large particles always have higher effective melting temperatures than small ones. As a result, the dynamic reversal is totally eliminated. Our work provides another piece of evidence of the underlying connections between the properties of non-equilibrium glass-formers and equilibrium crystal-formers.

3.
Phys Chem Chem Phys ; 26(6): 4968-4974, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230694

RESUMO

Based on the excellent piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of Eu0.7Sr0.3MnO3/PMN-PT(111) multiferroic heterostructures under different in-plane reading currents, temperatures, light stimuli and electric fields, and discuss the underlying coupling mechanisms of resistivity change. The transition from the electric-field induced lattice strain effect to polarization current effect can be controlled effectively by decreasing the in-plane reading current at room temperature. With the decrease of temperature, the interfacial charge effect dominates over the lattice strain effect due to the reduced charge carrier density. In addition, light stimulus can lead to the delocalization of eg carriers, and thus enhance the lattice strain effect and suppress the interfacial charge effect. This work helps to understand essential physics of magnetoelectric coupling and also provides a potential method to realize energy-efficient multi-field control of manganite thin films.

4.
J Phys Chem A ; 128(5): 829-839, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38266177

RESUMO

Global-minimum optimizations combined with relativistic quantum chemistry calculations have been performed to characterize the ground-state stable structures of four titled compounds and to analyze the bonding properties. Th2C8 was identified as being a ThC4-Th(C2)2 structure, U2C8 has been found to favor the U-U(C8) structure, and both Th3C8 and U3C8 adopt the (AnC3)2-(AnC2) structure. Then, the wave function analyses reveal that the interactions between the Th 7s-based orbital and the σg molecular orbital of the C2 unit compensate for the excitation energy of 7s16d1 → 6d2 and lead to the stabilization of two Th(IV)s in the ThC4-Th(C2)2 structure. It also reveals that the U species exhibit magnetic exchange coupling behavior in UxC8, for instance, as seen in the direct interaction of U2C8 and the superexchange pathway of U3C8, which effectively stabilizes their low-spin states. This interpretation indicates that the geometric and electronic structures of AnxC8 species are largely influenced by the local magnetic moment and spin correlation.

5.
J Nanobiotechnology ; 22(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167113

RESUMO

Electroconductive hydrogels offer a promising avenue for enhancing the repair efficacy of spinal cord injuries (SCI) by restoring disrupted electrical signals along the spinal cord's conduction pathway. Nonetheless, the application of hydrogels composed of diverse electroconductive materials has demonstrated limited capacity to mitigate the post-SCI inflammatory response. Recent research has indicated that the transplantation of M2 microglia effectively fosters SCI recovery by attenuating the excessive inflammatory response. Exosomes (Exos), small vesicles discharged by cells carrying similar biological functions to their originating cells, present a compelling alternative to cellular transplantation. This investigation endeavors to exploit M2 microglia-derived exosomes (M2-Exos) successfully isolated and reversibly bonded to electroconductive hydrogels through hydrogen bonding for synergistic promotion of SCI repair to synergistically enhance SCI repair. In vitro experiments substantiated the significant capacity of M2-Exos-laden electroconductive hydrogels to stimulate the growth of neural stem cells and axons in the dorsal root ganglion and modulate microglial M2 polarization. Furthermore, M2-Exos demonstrated a remarkable ability to mitigate the initial inflammatory reaction within the injury site. When combined with the electroconductive hydrogel, M2-Exos worked synergistically to expedite neuronal and axonal regeneration, substantially enhancing the functional recovery of rats afflicted with SCI. These findings underscore the potential of M2-Exos as a valuable reparative factor, amplifying the efficacy of electroconductive hydrogels in their capacity to foster SCI rehabilitation.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Ratos , Animais , Microglia/metabolismo , Exossomos/metabolismo , Hidrogéis/farmacologia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo
6.
Life (Basel) ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38255649

RESUMO

COCH (coagulation factor C homology) is one of the most frequently mutated genes of autosomal dominant non-syndromic hearing loss. Variants in COCH could cause DFNA9, which is characterized by late-onset hearing loss with variable degrees of vestibular dysfunction. In this study, we report a Chinese family with a novel COCH variant (c.1687delA) causing p.D544Vfs*3 in the cochlin. Comprehensive audiometric tests and vestibular function assessments were taken to acquire the phenotypic profile of the subjects. Next-generation sequencing was conducted and segregation analysis was carried out using Sanger sequencing. The proband presented mild vestibular symptoms and normal functional assessment results in almost every test, while the variant co-segregated with hearing impairment in the pedigree. The variant was located beyond the vWFA2 domain, which was predicted to affect the post-translational cleavage of the cochlin via molecular modeling analysis. Notably, in the overexpressing study, by transient transfecting the HEK 293T cells, we found that the p.D544Vfs*3 variant increased the formation of multimeric cochlin. Our result enriched the spectrum of DFNA9-linked pathological COCH variants and suggested that variants, causative of cochlin multimerization, could be related to DFNA9 with sensorineural hearing loss rather than serious vestibular symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA