Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Pulm Med ; 23(1): 373, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794454

RESUMO

OBJECTIVE: The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. We sought to identify IPF-related genes that may participate in the pathogenesis and predict potential targeted traditional Chinese medicines (TCMs). METHODS: Using IPF gene-expression data, Wilcoxon rank-sum tests were performed to identify differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks, hub genes, and competitive endogenous RNA (ceRNA) networks were constructed or identified by Cytoscape. Quantitative polymerase chain reaction (qPCR) experiments in TGF-ß1-induced human fetal lung (HFL) fibroblast cells and a pulmonary fibrosis mouse model verified gene reliability. The SymMap database predicted potential TCMs targeting IPF. The reliability of TCMs was verified in TGF-ß1-induced MRC-5 cells. MATERIALS: Multiple gene-expression profile data of normal lung and IPF tissues were downloaded from the Gene Expression Omnibus database. HFL fibroblast cells and MRC-5 cells were purchased from Wuhan Procell Life Science and Technology Co., Ltd. (Wuhan, China). C57BL/12 mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). RESULTS: In datasets GSE134692 and GSE15197, DEGs were identified using Wilcoxon rank-sum tests (both p < 0.05). Among them, 1885 DEGs were commonly identified, and 87% (1640 genes) had identical dysregulation directions (binomial test, p < 1.00E-16). A PPI network with 1623 nodes and 8159 edges was constructed, and 18 hub genes were identified using the Analyze Network plugin in Cytoscape. Of 18 genes, CAV1, PECAM1, BMP4, VEGFA, FYN, SPP1, and COL1A1 were further validated in the GeneCards database and independent dataset GSE24206. ceRNA networks of VEGFA, SPP1, and COL1A1 were constructed. The genes were verified by qPCR in samples of TGF-ß1-induced HFL fibroblast cells and pulmonary fibrosis mice. Finally, Sea Buckthorn and Gnaphalium Affine were predicted as potential TCMs for IPF. The TCMs were verified by qPCR in TGF-ß1-induced MRC-5 cells. CONCLUSION: This analysis strategy may be useful for elucidating novel mechanisms underlying IPF at the transcriptome level. The identified hub genes may play key roles in IPF pathogenesis and therapy.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Camundongos Endogâmicos C57BL , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Biologia Computacional
2.
Exp Lung Res ; : 1-14, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377281

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown origin, characterized by tissue fibrosis, for which currently there is no effective treatment. Macrophages, the main immune cells in lung tissue, are involved in the whole process of pulmonary fibrosis. In recent years, intercellular transformation has led to wide spread concern among pulmonary fibrosis researchers. Macrophages with flexible heterogeneity and plasticity participate in different physiological processes in the body. Cell chemokine receptor 8 (CCR8) is expressed in a variety of cells and plays a significant chemotactic role in the induction of cell activation and migration. It can also promote the differentiation of macrophages under certain environmental conditions. The current study is intended to explore the role of CCR8 in macrophage to myofibroblast transdifferentiation (MMT) in IPF. Methods: We conducted experiments using CCR8-specific small interfering RNA (siRNA), an autophagy inhibitor (3-methyladenine, 3-MA), and an agonist (rapamycin) to explore the underlying mechanisms of macrophage transdifferentiation into myofibroblast cells in transforming growth factor-beta (TGF-ß)-induced pulmonary fibrosis. Results: TGF-ß treatment increased the CCR8 protein level in a time- and dose-dependent manner in mouse alveolar macrophages, as well as macrophage transdifferentiation-related markers, including vimentin, collagen 1, and a-SMA, and cell migration. In addition, the levels of autophagy were enhanced in macrophages treated with TGF-ß. We found that 3-MA, an autophagy inhibitor, decreased the expression levels of macrophage transdifferentiation-related markers and attenuated cell migration. Furthermore, the inhibition of CCR8 via CCR8-specific siRNA reduced the levels of autophagy and macrophage transdifferentiation-related markers, and inhibited the cell migration. Enhancing autophagy with rapamycin attenuated the inhibition effect of CCR8-specific siRNA on macrophage migration and the increase in myofibroblast marker proteins. Conclusions: Our findings showed that the macrophages exposed to TGF-ß had the potential to transdifferentiate into myofibroblasts and CCR8 was involved in the process. The effect of CCR8 on TGF-ß-induced macrophage transdifferentiation occurs mainly through autophagy. Targeting CCR8 may be a novel therapeutic strategy for the treatment of IPF.

3.
Brief Bioinform ; 20(2): 482-491, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29040359

RESUMO

To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we demonstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical replicates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized differential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for analyzing small-scale cell line data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Humanos
4.
Bioinformatics ; 36(15): 4283-4290, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428201

RESUMO

MOTIVATION: For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, studies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods, such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly developed to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs. RESULTS: Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp, PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated and real one-phenotype data. Moreover, using the DEGs detected by common methods as the 'gold standard', the results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those identified by common methods using case-control samples, independent of the measurement platform. PhenoComp also exhibited good performance for weakly differential expression signal data. AVAILABILITY AND IMPLEMENTATION: The PhenoComp algorithm is available on the web at https://github.com/XJJ-student/PhenoComp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Fenótipo
5.
J Gastroenterol Hepatol ; 36(6): 1714-1720, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33150986

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) accounts for about 90% of pancreatic cancer, which is one of the most aggressive malignant neoplasms with a 9.3% five-year survival rate. The pathological biopsy is the current golden standard for confirming suspicious lesions of PDAC, but it is not entirely reliable because of the insufficient sampling amount and inaccurate sampling location. Therefore, developing a robust signature to aid the accurate diagnosis of PDAC is critical. METHODS: Based on the within-sample relative expression orderings of gene pairs, we identified a qualitative signature to discriminate both PDAC and adjacent samples from both chronic pancreatitis and normal samples in the training datasets and validated it in other independent datasets produced by different laboratories with different measuring platforms. RESULTS: A six-gene-pair signature was identified in the training data and validated in eight independent datasets. For surgical samples, 96.63% of 356 PDAC tissues, 100% of 11 pancreatitis tissues of non-cancer patients, and 23 of 24 normal pancreatic tissues were correctly classified. Especially, 59 of 60 cancer-adjacent normal tissues of PDAC patients were correctly identified as PDAC. For biopsy samples, all of 11 PDAC biopsy tissues were correctly classified as PDAC. CONCLUSION: The signature can distinguish both PDAC and PDAC-adjacent normal tissues from both chronic pancreatitis and normal tissues of non-cancer patients even when the sampling locations are inaccurate, which can aid the diagnosis of PDAC.


Assuntos
Biópsia/métodos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Técnicas de Diagnóstico do Sistema Digestório , Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Manejo de Espécimes/métodos , Transcriptoma , Carcinoma Ductal Pancreático/patologia , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Humanos , Neoplasias Pancreáticas/patologia
6.
Cancer Sci ; 111(1): 253-265, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785020

RESUMO

FOLFOX (5-fluorouracil, leucovorin and oxaliplatin) is one of the main chemotherapy regimens for colorectal cancer (CRC), but only half of CRC patients respond to this regimen. Using gene expression profiles of 96 metastatic CRC patients treated with FOLFOX, we first selected gene pairs whose within-sample relative expression orderings (REO) were significantly associated with the response to FOLFOX using the exact binomial test. Then, from these gene pairs, we applied an optimization procedure to obtain a subset that achieved the largest F-score in predicting pathological response of CRC to FOLFOX. The REO-based qualitative transcriptional signature, consisting of five gene pairs, was developed in the training dataset consisting of 96 samples with an F-score of 0.90. In an independent test dataset consisting of 25 samples with the response information, an F-score of 0.82 was obtained. In three other independent survival datasets, the predicted responders showed significantly better progression-free survival than the predicted non-responders. In addition, the signature showed a better predictive performance than two published FOLFOX signatures across different datasets and is more suitable for CRC patients treated with FOLFOX than 5-fluorouracil-based signatures. In conclusion, the REO-based qualitative transcriptional signature can accurately identify metastatic CRC patients who may benefit from the FOLFOX regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/genética , Estudos de Avaliação como Assunto , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêutico , Humanos , Leucovorina/administração & dosagem , Leucovorina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina/administração & dosagem , Intervalo Livre de Progressão , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
7.
Brief Bioinform ; 19(5): 793-802, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28334118

RESUMO

Identifying differentially expressed microRNAs (DE miRNAs) between cancer samples and normal controls is a common way to investigate carcinogenesis mechanisms. However, for a DE miRNA detected at the population-level, we do not know whether it is DE in a particular cancer sample. Here, based on the finding that the within-sample relative expression orderings of miRNA pairs are highly stable in a particular type of normal tissues but widely disrupted in the corresponding cancer tissues, we proposed a method, called RankMiRNA, to identify DE miRNAs in each cancer tissue compared with its own normal state. Evaluated with pair-matched miRNA expression profiles of cancer tissues and adjacent normal tissues for lung and liver cancers, RankMiRNA exhibited excellent performance. Finally, we exemplified an application of the individual-level differential expression analysis by finding miRNAs DE in at least 90% lung cancer tissues, defined as common DE miRNAs of lung cancer. After identifying DE miRNAs for each of 991 lung cancer samples from The Cancer Genome Atlas with RankMiRNA, we found that hsa-mir-210 was upregulated, while hsa-mir-490 and hsa-mir-486 were downregulated in > 90% of the 991 lung cancer samples. These common DE miRNAs were validated in independent pair-matched samples of cancer tissues and adjacent normal tissues measured with different platforms. In conclusion, RankMiRNA provides us a novel tool to find common and subtype-specific miRNAs for a type of cancer, allowing us to study cancer mechanisms in a novel way.


Assuntos
Neoplasias Pulmonares/genética , MicroRNAs/genética , Algoritmos , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica , Humanos , Valores de Referência
8.
BMC Genomics ; 20(1): 134, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760197

RESUMO

BACKGROUND: The amount of RNA per cell, namely the transcriptome size, may vary under many biological conditions including tumor. If the transcriptome size of two cells is different, direct comparison of the expression measurements on the same amount of total RNA for two samples can only identify genes with changes in the relative mRNA abundances, i.e., cellular mRNA concentration, rather than genes with changes in the absolute mRNA abundances. RESULTS: Our recently proposed RankCompV2 algorithm identify differentially expressed genes (DEGs) through comparing the relative expression orderings (REOs) of disease samples with that of normal samples. We reasoned that both the mRNA concentration and the absolute abundances of these DEGs must have changes in disease samples. In simulation experiments, this method showed excellent performance for identifying DEGs between normal and disease samples with different transcriptome sizes. Through analyzing data for ten cancer types, we found that a significantly higher proportion of the DEGs with absolute mRNA abundance changes overlapped or directly interacted with known cancer driver genes and anti-cancer drug targets than that of the DEGs only with mRNA concentration changes alone identified by the traditional methods. The DEGs with increased absolute mRNA abundances were enriched in DNA damage-related pathways, while DEGs with decreased absolute mRNA abundances were enriched in immune and metabolism associated pathways. CONCLUSIONS: Both the mRNA concentration and the absolute abundances of the DEGs identified through REOs comparison change in disease samples in comparison with normal samples. In cancers these genes might play more important upstream roles in carcinogenesis.


Assuntos
Genes Neoplásicos , Neoplasias/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Transcriptoma , Algoritmos , Biologia Computacional , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Fenótipo
9.
Cancer Sci ; 110(10): 3225-3234, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31335996

RESUMO

Currently, using biopsy specimens for the early diagnosis of colorectal cancer (CRC) is not entirely reliable due to insufficient sampling amount and inaccurate sampling location. Thus, it is necessary to develop a signature that can accurately identify patients with CRC under these clinical scenarios. Based on the relative expression orderings of genes within individual samples, we developed a qualitative transcriptional signature to discriminate CRC tissues, including CRC adjacent normal tissues from non-CRC individuals. The signature was validated using multiple microarray and RNA sequencing data from different sources. In the training data, a signature consisting of 7 gene pairs was identified. It was well validated in both biopsy and surgical resection specimens from multiple datasets measured by different platforms. For biopsy specimens, 97.6% of 42 CRC tissues and 94.5% of 163 non-CRC (normal or inflammatory bowel disease) tissues were correctly classified. For surgically resected specimens, 99.5% of 854 CRC tissues and 96.3% of 81 CRC adjacent normal tissues were correctly identified as CRC. Notably, we additionally measured 33 CRC biopsy specimens by the Affymetrix platform and 13 CRC surgical resection specimens, with different proportions of tumor epithelial cells, ranging from 40% to 100%, by the RNA sequencing platform, and all these samples were correctly identified as CRC. The signature can be used for the early diagnosis of CRC, which is also suitable for minimum biopsy specimens and inaccurately sampled specimens, and thus has potential value for clinical application.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Perfilação da Expressão Gênica/métodos , Biópsia , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e Especificidade , Análise de Sequência de RNA/métodos
10.
J Transl Med ; 17(1): 63, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819200

RESUMO

BACKGROUND: Currently, pathological examination of gastroscopy biopsy specimens is the gold standard for gastric cancer (GC) diagnosis. However, it has a false-negative rate of 10-20% due to inaccurate sampling locations and/or insufficient sampling amount. A signature should be developed to aid the early diagnosis of GC using biopsy specimens even when they are sampled from inaccurate locations. METHODS: We extracted a robust qualitative transcriptional signature, based on the within-sample relative expression orderings (REOs) of gene pairs, to discriminate both GC tissues and adjacent-normal tissues from non-GC gastritis, intestinal metaplasia and normal gastric tissues. RESULTS: A signature consisting of two gene pairs for GC diagnosis was identified and validated in data of both biopsy specimens and surgical resection specimens pooled from publicly available datasets measured by different laboratories with different platforms. For gastroscopy biopsy specimens, 96.20% of 79 non-GC tissues were correctly identified as non-GC, and 96.84% of 158 GC tissues and six of seven adjacent-normal tissues were correctly identified as GC. For surgical resection specimens, 98.37% of 2560 GC tissues and 97.28% of 221 adjacent-normal tissues were correctly identified as GC. Especially, 97.67% of the 257 GC patients at stage I were exactly diagnosed as GC. We additionally measured 21 GC tissues from seven different GC patients, each with three specimens sampled from three tumor locations with different proportions of the tumor epithelial cell. All these GC tissues were correctly identified as GC, even when the proportion of the tumor epithelial cell was as low as 14%. CONCLUSIONS: The qualitative transcriptional signature can distinguish both GC and adjacent-normal tissues from normal, gastritis and intestinal metaplasia tissues of non-GC patients even using inaccurately sampled biopsy specimens, which can be applied robustly at the individual level to aid the early GC diagnosis.


Assuntos
Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma/genética , Bases de Dados Genéticas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Curva ROC , Reprodutibilidade dos Testes , Neoplasias Gástricas/diagnóstico
11.
J Gastroenterol Hepatol ; 34(5): 880-889, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30395690

RESUMO

BACKGROUND AND AIM: Differentially expressed (DE) genes detected at the population-level through case-control comparison provide no information on the dysregulation frequencies of DE genes in a cancer. In this work, we aimed to identify the genes with universally upregulated or downregulated expressions in colorectal cancer (CRC). METHODS: We firstly clarified that DE genes in an individual cancer tissue should be the disease-relevant genes, which are dysregulated in the cancer tissue in comparison with its own previously normal state. Then, we identified DE genes at the individual level for 2233 CRC samples collected from multiple data sources using the RankComp algorithm. RESULTS: We found 26 genes that were upregulated or downregulated in almost all the 2233 CRC samples and validated the results using 124 CRC tissues with paired adjacent normal tissues. Especially, we found that two genes (AJUBA and EGFL6), upregulated universally in CRC tissues, were extremely lowly expressed in normal colorectal tissues, which were considered to be oncogenes in CRC oncogenesis and development. Oppositely, we found that one gene (LPAR1), downregulated universally in CRC tissues, was silenced in CRC tissues but highly expressed in normal colorectal tissues, which were considered to be tumor suppressor genes in CRC. Functional evidences revealed that these three genes may induce CRC through deregulating pathways for ribosome biogenesis, cell proliferation, and cell cycle. CONCLUSIONS: In conclusion, the individual-level DE genes analysis can help us find genes dysregulated universally in CRC tissues, which may be important diagnostic biomarkers and therapy targets.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas com Domínio LIM/genética , Glicoproteínas de Membrana/genética , Receptores de Ácidos Lisofosfatídicos/genética , Regulação para Cima/genética , Idoso , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Neoplasias Colorretais/terapia , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular
12.
BMC Genomics ; 19(1): 99, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378509

RESUMO

BACKGROUND: Due to experimental batch effects, the application of a quantitative transcriptional signature for disease diagnoses commonly requires inter-sample data normalization, which would be hardly applicable under common clinical settings. Many cancers might have qualitative differences with the non-cancer states in the gene expression pattern. Therefore, it is reasonable to explore the power of qualitative diagnostic signatures which are robust against experimental batch effects and other random factors. RESULTS: Firstly, using data of technical replicate samples from the MicroArray Quality Control (MAQC) project, we demonstrated that the low-throughput PCR-based technologies also exist large measurement variations for gene expression even when the samples were measured in the same test site. Then, we demonstrated the critical limitation of low stability for classifiers based on quantitative transcriptional signatures in applications to individual samples through a case study using a support vector machine and a naïve Bayesian classifier to discriminate colorectal cancer tissues from normal tissues. To address this problem, we identified a signature consisting of three gene pairs for discriminating colorectal cancer tissues from non-cancer (normal and inflammatory bowel disease) tissues based on within-sample relative expression orderings (REOs) of these gene pairs. The signature was well verified using 22 independent datasets measured by different microarray and RNA_seq platforms, obviating the need of inter-sample data normalization. CONCLUSIONS: Subtle quantitative information of gene expression measurements tends to be unstable under current technical conditions, which will introduce uncertainty to clinical applications of the quantitative transcriptional diagnostic signatures. For diagnosis of disease states with qualitative transcriptional characteristics, the qualitative REO-based signatures could be robustly applied to individual samples measured by different platforms.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Análise de Sequência de RNA/métodos , Algoritmos , Teorema de Bayes , Estudos de Casos e Controles , Humanos
13.
Liver Int ; 38(10): 1812-1819, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29682909

RESUMO

BACKGROUND & AIMS: Currently, using biopsy specimens to confirm suspicious liver lesions of early hepatocellular carcinoma are not entirely reliable because of insufficient sampling amount and inaccurate sampling location. It is necessary to develop a signature to aid early hepatocellular carcinoma diagnosis using biopsy specimens even when the sampling location is inaccurate. METHODS: Based on the within-sample relative expression orderings of gene pairs, we identified a simple qualitative signature to distinguish both hepatocellular carcinoma and adjacent non-tumour tissues from cirrhosis tissues of non-hepatocellular carcinoma patients. RESULTS: A signature consisting of 19 gene pairs was identified in the training data sets and validated in 2 large collections of samples from biopsy and surgical resection specimens. For biopsy specimens, 95.7% of 141 hepatocellular carcinoma tissues and all (100%) of 108 cirrhosis tissues of non-hepatocellular carcinoma patients were correctly classified. Especially, all (100%) of 60 hepatocellular carcinoma adjacent normal tissues and 77.5% of 80 hepatocellular carcinoma adjacent cirrhosis tissues were classified to hepatocellular carcinoma. For surgical resection specimens, 99.7% of 733 hepatocellular carcinoma specimens were correctly classified to hepatocellular carcinoma, while 96.1% of 254 hepatocellular carcinoma adjacent cirrhosis tissues and 95.9% of 538 hepatocellular carcinoma adjacent normal tissues were classified to hepatocellular carcinoma. In contrast, 17.0% of 47 cirrhosis from non-hepatocellular carcinoma patients waiting for liver transplantation were classified to hepatocellular carcinoma, indicating that some patients with long-lasting cirrhosis could have already gained hepatocellular carcinoma characteristics. CONCLUSIONS: The signature can distinguish both hepatocellular carcinoma tissues and tumour-adjacent tissues from cirrhosis tissues of non-hepatocellular carcinoma patients even using inaccurately sampled biopsy specimens, which can aid early diagnosis of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Diagnóstico Precoce , Neoplasias Hepáticas/genética , Fígado/patologia , Transcriptoma , Biópsia , Carcinoma Hepatocelular/diagnóstico , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/diagnóstico , Transplante de Fígado , Curva ROC , Listas de Espera
14.
BMC Genomics ; 18(1): 913, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179677

RESUMO

BACKGROUND: It is often difficult to obtain sufficient quantity of RNA molecules for gene expression profiling under many practical situations. Amplification from low-input samples may induce artificial signals. RESULTS: We compared the expression measurements of low-input mRNA samples, from 25 pg to 1000 pg mRNA, which were amplified and profiled by Smart-seq, DP-seq and CEL-seq techniques using the Illumina HiSeq 2000 platform, with those of the paired high-input (50 ng) mRNA samples. Even with 1000 pg mRNA input, we found that thousands of genes had at least 2 folds-change of expression levels in the low-input samples compared with the corresponding paired high-input samples. Consequently, a transcriptional signature based on quantitative expression values and determined from high-input RNA samples cannot be applied to low-input samples, and vice versa. In contrast, the within-sample relative expression orderings (REOs) of approximately 90% of all the gene pairs in the high-input samples were maintained in the paired low-input samples with 1000 pg input mRNA molecules. Similar results were observed in the low-input total RNA samples amplified and profiled by the Whole-Genome DASL technique using the Illumina HumanRef-8 v3.0 platform. As a proof of principle, we developed REOs-based signatures from high-input RNA samples for discriminating cancer tissues and showed that they can be robustly applied to low-input RNA samples. CONCLUSIONS: REOs-based signatures determined from the high-input RNA samples can be robustly applied to samples profiled with the low-input RNA samples, as low as the 1000 pg and 250 pg input samples but no longer stable in samples with less than 250 pg RNA input to a certain degree.


Assuntos
Perfilação da Expressão Gênica/métodos , Humanos , Células MCF-7 , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Transcriptoma
15.
J Transl Med ; 15(1): 26, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178989

RESUMO

BACKGROUND: Due to the heterogeneity of cancer, identifying differentially methylated (DM) CpG sites between a set of cancer samples and a set of normal samples cannot tell us which patients have methylation aberrations in a particular DM CpG site. METHODS: We firstly showed that the relative methylation-level orderings (RMOs) of CpG sites within individual normal lung tissues are highly stable but widely disrupted in lung adenocarcinoma tissues. This finding provides the basis of using the RankComp algorithm, previously developed for differential gene expression analysis at the individual level, to identify DM CpG sites in each cancer tissue compared with its own normal state. Briefly, through comparing with the highly stable normal RMOs predetermined in a large collection of samples for normal lung tissues, the algorithm finds those CpG sites whose hyper- or hypo-methylations may lead to the disrupted RMOs of CpG site pairs within a disease sample based on Fisher's exact test. RESULTS: Evaluated in 59 lung adenocarcinoma tissues with paired adjacent normal tissues, RankComp reached an average precision of 94.26% for individual-level DM CpG sites. Then, after identifying DM CpG sites in each of the 539 lung adenocarcinoma samples from TCGA, we found five and 44 CpG sites hypermethylated and hypomethylated in above 90% of the disease samples, respectively. These findings were validated in 140 publicly available and eight additionally measured paired cancer-normal samples. Gene expression analysis revealed that four of the five genes, HOXA9, TAL1, ATP8A2, ENG and SPARCL1, each harboring one of the five frequently hypermethylated CpG sites within its promoters, were also frequently down-regulated in lung adenocarcinoma. CONCLUSIONS: The common DNA methylation aberrations in lung adenocarcinoma tissues may be important for lung adenocarcinoma diagnosis and therapy.


Assuntos
Adenocarcinoma/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Algoritmos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia
16.
J Transl Med ; 15(1): 198, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962576

RESUMO

BACKGROUND: The Connectivity Map (CMAP) database, an important public data source for drug repositioning, archives gene expression profiles from cancer cell lines treated with and without bioactive small molecules. However, there are only one or two technical replicates for each cell line under one treatment condition. For such small-scale data, current fold-changes-based methods lack statistical control in identifying differentially expressed genes (DEGs) in treated cells. Especially, one-to-one comparison may result in too many drug-irrelevant DEGs due to random experimental factors. To tackle this problem, CMAP adopts a pattern-matching strategy to build "connection" between disease signatures and gene expression changes associated with drug treatments. However, many drug-irrelevant genes may blur the "connection" if all the genes are used instead of pre-selected DEGs induced by drug treatments. METHODS: We applied OneComp, a customized version of RankComp, to identify DEGs in such small-scale cell line datasets. For a cell line, a list of gene pairs with stable relative expression orderings (REOs) were identified in a large collection of control cell samples measured in different experiments and they formed the background stable REOs. When applying OneComp to a small-scale cell line dataset, the background stable REOs were customized by filtering out the gene pairs with reversal REOs in the control samples of the analyzed dataset. RESULTS: In simulated data, the consistency scores of overlapping genes between DEGs identified by OneComp and SAM were all higher than 99%, while the consistency score of the DEGs solely identified by OneComp was 96.85% according to the observed expression difference method. The usefulness of OneComp was exemplified in drug repositioning by identifying phenformin and metformin related genes using small-scale cell line datasets which helped to support them as a potential anti-tumor drug for non-small-cell lung carcinoma, while the pattern-matching strategy adopted by CMAP missed the two connections. The implementation of OneComp is available at https://github.com/pathint/reoa . CONCLUSIONS: OneComp performed well in both the simulated and real data. It is useful in drug repositioning studies by helping to find hidden "connections" between drugs and diseases.


Assuntos
Bases de Dados Genéticas , Reposicionamento de Medicamentos , Estatística como Assunto , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Metformina/farmacologia , Fenformin/farmacologia , Mapas de Interação de Proteínas/genética , Tamanho da Amostra
17.
Liver Int ; 37(11): 1688-1696, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28481424

RESUMO

BACKGROUND & AIMS: Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. METHODS: The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. RESULTS: With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. CONCLUSIONS: Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral/classificação , Ontologia Genética , Humanos , Fígado/patologia , Pesquisa Translacional Biomédica
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(1): 129-33, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29717600

RESUMO

Traditional classifiers, such as support vector machine and Bayesian classifier, require data normalization for removing experimental batch effects, which limit their applications at the individual level. In this paper,we aim to build a classifier to distinguish lung cancer and non-cancer lung tissues(pneumonia and normal lung tissues).We identified gene pairs as signatures to build a classifier based on the within-sample relative expression orderings of gene pairs in a particular type of tissues(cancer or non-cancer). Using multiple independent datasets as the training data,including a total of 197 lung cancer cases and 189 non-cancer cases, we identified three gene pairs. Classifying a sample by the majority voting rule, the average accuracy reached 95.34% in the training data. Using multiple independent validation datasets, including a total of 251 lung cancer samples and 141 non-cancer samples without data normalization, the average accuracy was as high as 96.78%. The rank-based signature is robust against experimental batch effects and can be used to diagnose lung cancer using samples measured by different laboratories at the individual level.


Assuntos
Neoplasias Pulmonares/genética , Algoritmos , Teorema de Bayes , Biomarcadores Tumorais , Bases de Dados Genéticas , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Pulmão
19.
Chin Med ; 19(1): 32, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413976

RESUMO

OBJECT: Bufei Yishen formula (BYF), a traditional Chinese medicine alleviates COPD symptoms and suppresses airway epithelial inflammation. In this study, we determined whether BYF protects the airway epithelial barrier from destruction in COPD rats. METHODS: The protective effects of BYF on the airway epithelial barrier were examined in a rat COPD model. BEAS-2B epithelial cells were exposed to cigarette smoke extract (CSE) to determine the effect of BYF on epithelial barrier function. Transcriptomic and network analyses were conducted to identify the protective mechanisms. RESULTS: Oral BYF reduced the severity of COPD in rats by suppressing the decline in lung function, pathological changes, inflammation, and protected airway epithelial barrier function by upregulating apical junction proteins, including occludin (OCLN), zonula occludens (ZO)-1, and E-cadherin (E-cad). BYF treatment reduced epithelial permeability, and increased TEER as well as the apical junction proteins, OCLN, ZO-1, and E-cad in BEAS-2B cells exposed to CSE. Furthermore, 58 compounds identified in BYF were used to predict 421 potential targets. In addition, the expression of 572 differentially expressed genes (DEGs) was identified in CSE-exposed BEAS-2B cells. A network analysis of the 421 targets and 572 DEGs revealed that BYF regulates multiple pathways, of which the Sirt1, AMPK, Foxo3, and autophagy pathways may be the most important with respect to protective mechanisms. Moreover, in vitro experiments confirmed that nobiletin, one of the active compounds in BYF, increased apical junction protein levels, including OCLN, ZO-1, and E-cad. It also increased LC3B and phosphorylated AMPK levels and decreased the phosphorylation of FoxO3a. CONCLUSIONS: BYF protects the airway epithelial barrier in COPD by enhancing autophagy through regulation of the SIRT1/AMPK/FOXO3 signaling pathway.

20.
Int Immunopharmacol ; 132: 112048, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593509

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar Idiopática , Fibrose Pulmonar Idiopática/genética , Animais , Humanos , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Perfilação da Expressão Gênica , Linhagem Celular , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA