Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Cell ; 36(1): 194-212, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37804098

RESUMO

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including ß-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit ß-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , beta-Amilase , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malato Desidrogenase/metabolismo , beta-Amilase/metabolismo , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Amido/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
Plant Cell ; 32(11): 3469-3484, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843433

RESUMO

CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Proteínas de Plantas/química , Sítios de Ligação , Cristalografia por Raios X , DNA de Plantas/metabolismo , Família Multigênica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oryza/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
3.
Nature ; 534(7608): 575-8, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27281194

RESUMO

Chemical modifications of RNA have essential roles in a vast range of cellular processes. N(6)-methyladenosine (m(6)A) is an abundant internal modification in messenger RNA and long non-coding RNA that can be dynamically added and removed by RNA methyltransferases (MTases) and demethylases, respectively. An MTase complex comprising methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) efficiently catalyses methyl group transfer. In contrast to the well-studied DNA MTase, the exact roles of these two RNA MTases in the complex remain to be elucidated. Here we report the crystal structures of the METTL3-METTL14 heterodimer with MTase domains in the ligand-free, S-adenosyl methionine (AdoMet)-bound and S-adenosyl homocysteine (AdoHcy)-bound states, with resolutions of 1.9, 1.71 and 1.61 Å, respectively. Both METTL3 and METTL14 adopt a class I MTase fold and they interact with each other via an extensive hydrogen bonding network, generating a positively charged groove. Notably, AdoMet was observed in only the METTL3 pocket and not in METTL14. Combined with biochemical analysis, these results suggest that in the m(6)A MTase complex, METTL3 primarily functions as the catalytic core, while METTL14 serves as an RNA-binding platform, reminiscent of the target recognition domain of DNA N(6)-adenine MTase. This structural information provides an important framework for the functional investigation of m(6)A.


Assuntos
Adenosina/análogos & derivados , Biocatálise , Metiltransferases/química , Metiltransferases/metabolismo , Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Ligantes , Metilação , Modelos Biológicos , Modelos Moleculares , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade
4.
Plant Biotechnol J ; 19(8): 1579-1587, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33638282

RESUMO

Cellulose is one of the most abundant organic polymers in nature. It contains multiple ß-1,4-glucan chains synthesized by cellulose synthases (CesAs) on the plasma membrane of higher plants. CesA subunits assemble into a pseudo-sixfold symmetric cellulose synthase complex (CSC), known as a 'rosette complex'. The structure of CesA remains enigmatic. Here, we report the cryo-EM structure of the homotrimeric CesA7 from Gossypium hirsutum at 3.5-angstrom resolution. The GhCesA7 homotrimer shows a C3 symmetrical assembly. Each protomer contains seven transmembrane helices (TMs) which form a channel potentially facilitating the release of newly synthesized glucans. The cytoplasmic glycosyltransferase domain (GT domain) of GhCesA7 protrudes from the membrane, and its catalytic pocket is directed towards the TM pore. The homotrimer GhCesA7 is stabilized by the transmembrane helix 7 (TM7) and the plant-conserved region (PCR) domains. It represents the building block of CSCs and facilitates microfibril formation. This structure provides insight into how eukaryotic cellulose synthase assembles and provides a mechanistic basis for the improvement of cotton fibre quality in the future.


Assuntos
Glucosiltransferases , Gossypium , Celulose , Fibra de Algodão , Glucosiltransferases/genética , Gossypium/genética
5.
RNA Biol ; 18(sup1): 244-253, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34074215

RESUMO

Various kinds of cap structures, such as m7G, triphosphate groups, NAD and dpCoA, protect the 5' terminus of RNA. The cap structures bond covalently to RNA and affect its stability, translation, and transport. The removal of the caps is mainly executed by Nudix hydrolase family proteins, including Dcp2, RppH and NudC. Numerous efforts have been made to elucidate the mechanism underlying the removal of m7G, triphosphate group, and NAD caps. In contrast, few studies related to the cleavage of the RNA dpCoA cap have been conducted. Here, we report the hydrolytic activity of Escherichia coli NudC towards dpCoA and dpCoA-capped RNA in vitro. We also determined the crystal structure of dimeric NudC in complex with dpCoA at 2.0 Å resolution. Structural analysis revealed that dpCoA is recognized and hydrolysed in a manner similar to NAD. In addition, NudC may also remove other dinucleotide derivative caps of RNA, which comprise the AMP moieties. NudC homologs in Saccharomyces cerevisiae and Arabidopsis thaliana exhibited similar dpCoA decapping (deCoAping) activity. These results together indicate a conserved mechanism underpinning the hydrolysis of dpCoA-capped RNA in both prokaryotes and eukaryotes.


Assuntos
Coenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Pirofosfatases/metabolismo , Capuzes de RNA/química , RNA Bacteriano/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Nudix Hidrolases
6.
Hum Mol Genet ; 27(23): 4061-4076, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137324

RESUMO

Spinal muscular atrophy (SMA) is a fatal genetic disease, mainly affecting children. A number of recent studies show, aside from lower motor neuron degeneration and atrophy of skeletal muscles, widespread defects present in the central nervous system (CNS) and peripheral non-neuronal cell types of SMA patients and mouse models, particularly of severe forms. However, molecular mechanisms underlying the multi-organ manifestations of SMA were hardly understood. Here, using histology, flow cytometry and gene expression analysis in both messenger RNA and protein levels in various tissues, we found that a severe SMA mouse model develops systemic inflammation in early symptomatic stages. SMA mice had an enhanced intestinal permeability, resulting in microbial invasion into the circulatory system. Expression of proinflammatory cytokines was increased in all tissues and the acute phase response in the liver was activated. Systemic inflammation further mobilized glucocorticoid signaling and in turn led to dysregulation of a large set of genes, including robust upregulation of FAM107A in the spinal cord, increased expression of which has been implicated in neurodegeneration. Moreover, we show that lipopolysaccharide challenge markedly suppressed survival of motor neuron 2 exon 7 splicing in all examined peripheral and CNS tissues, resulting in global survival of motor neuron level reduction. Therefore, we identified a novel pathological mechanism in a severe SMA mouse model, which affects phenotypic severity through multiple paths and should contribute to progression of broad neuronal and non-neuronal defects.


Assuntos
Inflamação/genética , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteínas Supressoras de Tumor/genética , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Citocinas/genética , Modelos Animais de Doenças , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
7.
Nucleic Acids Res ; 46(13): 6880-6892, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29931175

RESUMO

mRNA decay is an important strategy by which bacteria can rapidly adapt to their ever-changing surroundings. The 5'-terminus state of mRNA determines the velocity of decay of many types of RNA. In Escherichia coli, RNA pyrophosphohydrolase (RppH) is responsible for the removal of the 5'-terminal triphosphate from hundreds of mRNAs and triggers its rapid degradation by ribonucleases. A diaminopimelate epimerase, DapF, can directly interact with RppH and stimulate its hydrolysis activity in vivo and in vitro. However, the molecular mechanism remains to be elucidated. Here, we determined the complex structure of DapF-RppH as a heterotetramer in a 2:2 molar ratio. DapF-bound RppH exhibits an RNA-favorable conformation similar to the RNA-bound state, suggesting that association with DapF promotes and stabilizes RppH in a conformation that facilitates substrate RNA binding and thus stimulates the activity of RppH. To our knowledge, this is the first published structure of an RNA-pyrophosphohydrolysis complex in bacteria. Our study provides a framework for further investigation of the potential regulators involved in the RNA-pyrophosphohydrolysis process in prokaryotes.


Assuntos
Hidrolases Anidrido Ácido/química , Isomerases de Aminoácido/química , Proteínas de Escherichia coli/química , Hidrolases Anidrido Ácido/metabolismo , Isomerases de Aminoácido/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA/química , RNA/metabolismo
8.
J Biol Chem ; 293(50): 19492-19500, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30333234

RESUMO

Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate-acetate/proton symporter in Escherichia coli However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.


Assuntos
Proteínas de Escherichia coli/química , Transportadores de Ânions Orgânicos/química , Multimerização Proteica , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Transportadores de Ânions Orgânicos/metabolismo , Estrutura Quaternária de Proteína
9.
Biochem Biophys Res Commun ; 501(4): 898-904, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29775612

RESUMO

Plant cytoplasmic male sterility (CMS) is an important phenomenon and is widely utilized in hybrid crop breeding. The Wild Abortive CMS (CMS-WA), a well-known CMS type, has been successfully applied in the commercial production of hybrid rice seeds for more than 40 years. The CMS-WA causal gene WA352 encodes a novel transmenbrane protein and the interacts with the mitochondrial copper chaperone COX11, triggering reactive oxygen species production and resulting in male sterility in CMS-WA lines. However, the structure of WA352 is currently unknown, and the structural mechanism whereby WA352 perturbs COX11 function to cause CMS remains largely unknown. Here, we report the crystal structure of the C-terminal functional domain of WA352 at 1.3 Šresolution. This functional domain, consisting of five α helices, is spindle-shaped with a length of 42 Å, and a diameter of 28 Å. Notably, the absence of any structural similarity to a known protein structure suggests that the WA352 functional domain is a novel fold. In addition, surface conservation analysis and structural modeling of the WA352-COX11 complex revealed details about the WA352-COX11 interaction. Further structural analysis suggested that the WA352-COX11 interaction blocks the copper ion transportation activity of COX11, which is essential for the assembly of cytochrome c oxidase, resulting in male sterility in CMS-WA lines. Our study paves the way toward structural determination of the WA352-COX11 complex and provides new insight into the mechanism of plant CMS.


Assuntos
Citoplasma/metabolismo , Oryza/fisiologia , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/química , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos
10.
Biochim Biophys Acta Gen Subj ; 1862(9): 1843-1851, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852200

RESUMO

BACKGROUND: Biotin is an essential cofactor in living organisms. The TetR family transcriptional regulator (TFTR) BioQ is the main regulator of biotin synthesis in Mycobacterium smegmatis. BioQ represses the expression of its target genes by binding to a conserved palindromic DNA sequence (the BioQ operator). However, the mechanism by which BioQ recognizes this DNA element has not yet been fully elucidated. METHODS/RESULTS: We solved the crystal structures of the BioQ homodimer in its apo-form and in complex with its specific operator at 2.26 Šand 2.69 Šresolution, respectively. BioQ inserts the N-terminal recognition helix of each protomer into the corresponding major grooves of its operator and stabilizes the formation of the complex via electrostatic interactions and hydrogen bonding to induce conformational changes in both the DNA and BioQ. The DNA interface of BioQ is rich in positively charged residues, which help BioQ stabilize DNA binding. We elucidated the structural basis of DNA recognition by BioQ for the first time and identified the amino acid residues responsible for DNA binding via further site-directed mutagenesis. GENERAL SIGNIFICANCE: Our findings clearly elucidate the mechanism by which BioQ recognizes its operator in the biotin synthesis pathway and reveal the unique structural characteristics of BioQ that are distinct from other TFTR members.


Assuntos
Proteínas de Bactérias/metabolismo , Biotina/metabolismo , DNA Bacteriano/metabolismo , Mycobacterium smegmatis/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Vias Biossintéticas , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Biochem Biophys Res Commun ; 478(1): 307-313, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381865

RESUMO

Crystal (Cry) proteins from Bacillus thuringiensis (Bt) are globally used in agriculture as proteinaceous insecticides. Numerous crystal structures have been determined, and most exhibit conserved three-dimensional architectures. Recently, we have identified a novel nematicidal mechanism by which Cry6Aa triggers cell death through a necrosis-signaling pathway via an interaction with the host protease ASP-1. However, we found little sequence conservation of Cry6Aa in our functional study. Here, we report the 1.90 angstrom (Å) resolution structure of the proteolytic form of Cry6Aa (1-396), determined by X-ray crystallography. The structure of Cry6Aa is highly similar to those of the pathogenic toxin family of ClyA-type α-pore-forming toxins (α-PFTs), which are characterized by a bipartite structure comprising a head domain and a tail domain, thus suggesting that Cry6Aa exhibits a previously undescribed nematicidal mode of action. This structure also provides a framework for the functional study of other nematicidal toxins.


Assuntos
Antinematódeos/química , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Hemolisinas/ultraestrutura , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Sequência de Aminoácidos , Toxinas de Bacillus thuringiensis , Sítios de Ligação , Endotoxinas , Dados de Sequência Molecular , Porosidade , Ligação Proteica , Conformação Proteica
13.
Science ; 384(6703): 1453-1460, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38870272

RESUMO

Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.


Assuntos
Acetatos , Afídeos , Proteínas de Insetos , Receptores Odorantes , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Afídeos/química , Acetatos/química , Acetatos/metabolismo , Ligantes , Terpenos/química , Terpenos/metabolismo , Odorantes/análise , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ativação do Canal Iônico , Microscopia Crioeletrônica , Monoterpenos Acíclicos
14.
Cell Discov ; 9(1): 8, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658132

RESUMO

N6-methyldeoxyadenine (6mA) has recently been reported as a prevalent DNA modification in eukaryotes. The Tetrahymena thermophila MTA1 complex consisting of four subunits, namely MTA1, MTA9, p1, and p2, is the first identified eukaryotic 6mA methyltransferase (MTase) complex. Unlike the prokaryotic 6mA MTases which have been biochemically and structurally characterized, the operation mode of the MTA1 complex remains largely elusive. Here, we report the cryogenic electron microscopy structures of the quaternary MTA1 complex in S-adenosyl methionine (SAM)-bound (2.6 Å) and S-adenosyl homocysteine (SAH)-bound (2.8 Å) states. Using an AI-empowered integrative approach based on AlphaFold prediction and chemical cross-linking mass spectrometry, we further modeled a near-complete structure of the quaternary complex. Coupled with biochemical characterization, we revealed that MTA1 serves as the catalytic core, MTA1, MTA9, and p1 likely accommodate the substrate DNA, and p2 may facilitate the stabilization of MTA1. These results together offer insights into the molecular mechanism underpinning methylation by the MTA1 complex and the potential diversification of MTases for N6-adenine methylation.

15.
Plant Commun ; 4(1): 100428, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065466

RESUMO

The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromossômicas não Histona , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinais , Raios Ultravioleta
16.
Nat Plants ; 9(7): 1130-1142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349549

RESUMO

NARROW LEAF 1 (NAL1) is a breeding-valuable pleiotropic gene that affects multiple agronomic traits in rice, although the molecular mechanism is largely unclear. Here, we report that NAL1 is a serine protease and displays a novel hexameric structure consisting of two ATP-mediated doughnut-shaped trimeric complexes. Moreover, we identified TOPLESS-related corepressor OsTPR2 involved in multiple growth and development processes as the substrate of NAL1. We found that NAL1 degraded OsTPR2, thus modulating the expression of downstream genes related to hormone signalling pathways, eventually achieving its pleiotropic physiological function. An elite allele, NAL1A, which may have originated from wild rice, could increase grain yield. Furthermore, the NAL1 homologues in different crops have a similar pleiotropic function to NAL1. Our study uncovers a NAL1-OsTPR2 regulatory module and provides gene resources for the design of high-yield crops.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Fenótipo , Serina Endopeptidases/metabolismo
17.
Nat Commun ; 14(1): 718, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759618

RESUMO

Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.


Assuntos
Polifosfatos , Saccharomyces cerevisiae , Polifosfatos/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Canais Iônicos/metabolismo
18.
Commun Biol ; 5(1): 801, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945427

RESUMO

Genetically modified plants with insecticidal proteins from Bacillus thuringiensis (Bt) have been successfully utilized to control various kinds of pests in crop production and reduce the abuse of pesticides. However, a limited number of genes are available for the protection of crops from rice planthopper. Recently, Cry78Aa protein from Bt strain C9F1 has been found to have high insecticidal activity against Laodelphax striatellus and Nilaparvata lugens. It is the first reported single-component protein in the world to combat rice planthoppers, making it very promising for use in transgenic crops. The ambiguous mechanism of Cry78Aa functions prevented further engineering or application. Here, we report the crystal structure of Cry78Aa, which consists of two domains: a C-terminal ß-pore forming domain belonging to the aerolysin family and an N-terminal trefoil domain resembling the S-type ricin B lectin. Thus, Cry78Aa could represent a distinctive type of ß-pore forming toxin. We also found that Cry78Aa binds carbohydrates such as galactose derivatives and is essential for insecticidal activity against Laodelphax striatellus. Our results suggest a mechanism underlying the function of Cry78Aa against rice planthoppers and pave the way to maximizing the usage of the toxin.


Assuntos
Bacillus thuringiensis , Hemípteros , Inseticidas , Animais , Bacillus thuringiensis/genética , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Hemípteros/metabolismo , Inseticidas/farmacologia
19.
Sci Adv ; 8(16): eabn3337, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442727

RESUMO

The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive. Here, we reproduced the regulation pathway of COP1-SPA in ultraviolet-B (UV-B) signaling in vitro and determined the cryo-electron microscopy structure of UV-B receptor UVR8 in complex with COP1. The complex formation is mediated by two-interface interactions between UV-B-activated UVR8 and COP1. Both interfaces are essential for the competitive binding of UVR8 against the signaling hub component HY5 to the COP1-SPA complex. We also show that RUP2 dissociates UVR8 from the COP1-SPA41-464-UVR8 complex and facilitates its redimerization. Our results support a UV-B signaling model that the COP1-SPA activity is repressed by UV-B-activated UVR8 and derepressed by RUP2, owing to competitive binding, and provide a framework for studying the regulatory roles of distinct photoreceptors on photomorphogenesis.

20.
Nat Commun ; 13(1): 1581, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332155

RESUMO

Phosphate (Pi) starvation response (PHR) transcription factors play key roles in plant Pi homeostasis maintenance. They are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX interacts with PHRs is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. In the SPX2/InsP6/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation and binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and MYB domain. Our results reveal that the SPX2 senses PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. Our findings rationalize how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA