Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EMBO J ; 42(24): e114835, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953666

RESUMO

Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.


Assuntos
Nematoides , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Filogenia , Transferência Genética Horizontal , Ramnose/metabolismo , Bactérias/genética
2.
EMBO J ; 42(19): e113328, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641865

RESUMO

Eukaryotic organisms adapt to environmental fluctuations by altering their epigenomic landscapes and transcriptional programs. Nucleosomal histones carry vital epigenetic information and regulate gene expression, yet the mechanisms underlying chromatin-bound histone exchange remain elusive. Here, we found that histone H2Bs are globally degraded in Caenorhabditis elegans during starvation. Our genetic screens identified mutations in ubiquitin and ubiquitin-related enzymes that block H2B degradation in starved animals, identifying lysine 31 as the crucial residue for chromatin-bound H2B ubiquitination and elimination. Retention of aberrant nucleosomal H2B increased the association of the FOXO transcription factor DAF-16 with chromatin, generating an ectopic gene expression profile detrimental to animal viability when insulin/IGF signaling was reduced in well-fed animals. Furthermore, we show that the ubiquitin-proteasome system regulates chromosomal histone turnover in human cells. During larval development, C. elegans epidermal cells undergo H2B turnover after fusing with the epithelial syncytium. Thus, histone degradation may be a widespread mechanism governing dynamic changes of the epigenome.


Assuntos
Caenorhabditis elegans , Histonas , Animais , Humanos , Histonas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Cromatina , Ubiquitinação , Ubiquitina/metabolismo
3.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567997

RESUMO

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/genética , RNA Interferente Pequeno/genética , Motivos de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Genoma Helmíntico/genética , Ligação Proteica , Proteômica , RNA Interferente Pequeno/biossíntese
4.
PLoS Genet ; 19(2): e1010628, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763670

RESUMO

Temperature greatly affects numerous biological processes in all organisms. How multicellular organisms respond to and are impacted by hypothermic stress remains elusive. Here, we found that cold-warm stimuli induced depletion of the RNA exosome complex in the nucleoli but enriched it in the nucleoplasm. To further understand the function and mechanism of cold-warm stimuli, we conducted forward genetic screening and identified ZTF-7, which is required for RNA exosome depletion from nucleoli upon transient cold-warm exposure in C. elegans. ZTF-7 is a putative ortholog of human ZNF277 that may contribute to language impairments. Immunoprecipitation followed by mass spectrometry (IP-MS) found that ZTF-7 interacted with RPS-2, which is a ribosomal protein of the small subunit and participates in pre-rRNA processing. A partial depletion of RPS-2 and other proteins of the small ribosomal subunit blocked the cold-warm stimuli-induced reduction of exosome subunits from the nucleoli. These results established a novel mechanism by which C. elegans responds to environmental cold-warm exposure.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Temperatura Baixa , Temperatura , Ligação Proteica
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058186

RESUMO

Genome-wide association studies (GWAS) have identified thousands of disease-associated non-coding variants, posing urgent needs for functional interpretation. Molecular Quantitative Trait Loci (xQTLs) such as eQTLs serve as an essential intermediate link between these non-coding variants and disease phenotypes and have been widely used to discover disease-risk genes from many population-scale studies. However, mining and analyzing the xQTLs data presents several significant bioinformatics challenges, particularly when it comes to integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive and scalable tool for bulk and single-cell xQTLs data retrieval, quality control and pre-processing from public repositories and our integrated resource. In addition, xQTLbiolinks provided a robust colocalization module through integration with GWAS summary statistics. The result generated by xQTLbiolinks can be flexibly visualized or stored in standard R objects that can easily be integrated with other R packages and custom pipelines. We applied xQTLbiolinks to cancer GWAS summary statistics as case studies and demonstrated its robust utility and reproducibility. xQTLbiolinks will profoundly accelerate the interpretation of disease-associated variants, thus promoting a better understanding of disease etiologies. xQTLbiolinks is available at https://github.com/lilab-bioinfo/xQTLbiolinks.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Fenótipo , Biologia Computacional , Polimorfismo de Nucleotídeo Único
6.
Nucleic Acids Res ; 51(D1): D1046-D1052, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36043442

RESUMO

Functional interpretation of disease-associated non-coding variants remains a significant challenge in the post-GWAS era. Our recent study has identified 3'UTR alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) and connects APA events with QTLs as a major driver of human traits and diseases. Besides 3'UTR, APA events can also occur in intron regions, and increasing evidence has connected intronic polyadenylation with disease risk. However, systematic investigation of the roles of intronic polyadenylation in human diseases remained challenging due to the lack of a comprehensive database across a variety of human tissues. Here, we developed ipaQTL-atlas (http://bioinfo.szbl.ac.cn/ipaQTL) as the first comprehensive portal for intronic polyadenylation. The ipaQTL-atlas is based on the analysis of 15 170 RNA-seq data from 838 individuals across 49 Genotype-Tissue Expression (GTEx v8) tissues and contains ∼0.98 million SNPs associated with intronic APA events. It provides an interface for ipaQTLs search, genome browser, boxplots, and data download, as well as the visualization of GWAS and ipaQTL colocalization results. ipaQTL-atlas provides a one-stop portal to access intronic polyadenylation information and could significantly advance the discovery of APA-associated disease susceptibility genes.


Assuntos
Íntrons , Poliadenilação , Locos de Características Quantitativas , Humanos , Regiões 3' não Traduzidas/genética , Íntrons/genética , Perfilação da Expressão Gênica , Atlas como Assunto
7.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187893

RESUMO

PIWI-interacting RNAs (piRNAs) play significant roles in suppressing transposons, maintaining genome integrity, and defending against viral infections. How piRNA source loci are efficiently transcribed is poorly understood. Here, we show that in Caenorhabditis elegans, transcription of piRNA clusters depends on the chromatin microenvironment and a chromodomain-containing protein, UAD-2. piRNA clusters form distinct focus in germline nuclei. We conducted a forward genetic screening and identified UAD-2 that is required for piRNA focus formation. In the absence of histone 3 lysine 27 methylation or proper chromatin-remodeling status, UAD-2 is depleted from the piRNA focus. UAD-2 recruits the upstream sequence transcription complex (USTC), which binds the Ruby motif to piRNA promoters and promotes piRNA generation. Vice versa, the USTC complex is required for UAD-2 to associate with the piRNA focus. Thus, transcription of heterochromatic small RNA source loci relies on coordinated recruitment of both the readers of histone marks and the core transcriptional machinery to DNA.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Heterocromatina/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Caenorhabditis elegans/genética , Montagem e Desmontagem da Cromatina , Testes Genéticos , Células Germinativas/citologia , Células Germinativas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Temperatura
8.
Nucleic Acids Res ; 49(17): 10082-10097, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34478557

RESUMO

The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3' untranslated regions (3' UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3' UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Longevidade/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Envelhecimento/genética , Animais , Cristalografia por Raios X , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/genética , Mitofagia/genética , Modelos Animais , Conformação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética
9.
Nucleic Acids Res ; 49(16): 9194-9210, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34365510

RESUMO

Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that function in the nucleus. We previously found that erroneous rRNAs induce the generation of antisense ribosomal siRNAs (risiRNAs) which silence the expression of rRNAs via the nuclear RNAi defective (Nrde) pathway. To further understand the biological roles and mechanisms of this class of small regulatory RNAs, we conducted forward genetic screening to identify factors involved in risiRNA generation in Caenorhabditis elegans. We found that risiRNAs accumulated in the RNA exosome mutants. risiRNAs directed the association of NRDE proteins with pre-rRNAs and the silencing of pre-rRNAs. In the presence of risiRNAs, NRDE-2 accumulated in the nucleolus and colocalized with RNA polymerase I. risiRNAs inhibited the transcription elongation of RNA polymerase I by decreasing RNAP I occupancy downstream of the RNAi-targeted site. Meanwhile, exosomes mislocalized from the nucleolus to nucleoplasm in suppressor of siRNA (susi) mutants, in which erroneous rRNAs accumulated. These results established a novel model of rRNA surveillance by combining ribonuclease-mediated RNA degradation with small RNA-directed nucleolar RNAi system.


Assuntos
RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Elongação da Transcrição Genética , Animais , Caenorhabditis elegans , Nucléolo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Exossomos/genética , Exossomos/metabolismo , Inativação Gênica , Mutação , RNA Ribossômico/genética , RNA Interferente Pequeno/genética
10.
Proc Natl Acad Sci U S A ; 115(40): 10082-10087, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224484

RESUMO

Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search for more suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.


Assuntos
Inativação Gênica , Metiltransferases , Proteínas Nucleares , RNA Ribossômico 18S , RNA Ribossômico , RNA Interferente Pequeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína O-Metiltransferase , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biol Cell ; 110(10): 217-224, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30132958

RESUMO

Epigenetic information can be inherited over multiple generations, which is termed as transgenerational epigenetic inheritance (TEI). Although the mechanism(s) of TEI remains poorly understood, noncoding RNAs have been demonstrated to play important roles in TEI. In many eukaryotes, double-stranded RNA (dsRNA) triggers the silencing of cellular nucleic acids that exhibit sequence homology to the dsRNA via a process termed RNA interference (RNAi). In Caenorhabditis elegans, dsRNA-directed gene silencing is heritable and can persist for a number of generations after its initial induction. During the process, small RNAs and the RNAi machinery mediate the initiation, transmission and re-establishment of the gene silencing state. In this review, we summarise our current understanding of the underlying mechanism(s) of transgenerational inheritance of RNAi in C. elegans and propose that multiple RNAi machineries may act cooperatively to promote TEI.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Interferência de RNA , Animais , Epigênese Genética/genética
12.
Ecotoxicol Environ Saf ; 162: 160-169, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990727

RESUMO

Unintentionally released titanium dioxide nanoparticles (TiO2 NPs) may co-occur with pre-existing heavy metal pollutants in aquatic environments. However, the interactions between NPs and heavy metals (HMs) and their co-effects in living organisms are largely unknown. The aim of this investigation was to illustrate the influence of TiO2 NPs (5 and 15 nm) on the bioaccumulation and toxicity of cadmium (Cd), arsenate (As(III)), and nickel (Ni) in Caenorhabditis elegans (C. elegans) during the process of sedimentation in aquatic environment. Our data showed that HMs accelerated the aggregation of TiO2 NPs. The rapid aggregation and sedimentation of TiO2 NPs changed the vertical distribution of HMs through adsorption and induced increased and prolonged exposure of benthic species. Aggregate particle size along with ionic strength were the major factors affecting the rate of sedimentation. TiO2 NPs at non-toxic concentrations efficiently enhanced the bioaccumulation and reproductive toxicity of HMs to C. elegans in a dose- and size-dependent manner; however, the effect of TiO2 NPs on As(III) was obviously lower than that on two valence metals. These data provided clear evidence that TiO2 NPs could serve as environmental regulators to significantly facilitate the toxicity and the accumulation of HMs in C. elegans, indicating that the interaction and fate of TiO2 NPs and HMs on their co-toxic responses during the sedimentation should be considered as a necessary and integral part of risk assessment in the ecological system.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Metais Pesados/toxicidade , Nanopartículas/química , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Apoptose/efeitos dos fármacos , Arseniatos/toxicidade , Cádmio/toxicidade , Caenorhabditis elegans/metabolismo , Relação Dose-Resposta a Droga , Sedimentos Geológicos/química , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Tamanho da Partícula
13.
RNA Biol ; 14(11): 1492-1498, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28640690

RESUMO

Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process remain poorly understood. For a long time, small rRNA sequences have been widely treated as non-specific degradation products and neglected as garbage sequences. Recently, we identified a new class of antisense ribosomal siRNAs (risiRNAs) that downregulate pre-rRNA through the nuclear RNAi pathway in C. elegans. risiRNAs exhibit sequence characteristics similar to 22G RNA while complement to 18S and 26S rRNA. risiRNAs elicit the translocation of the nuclear Argonaute protein NRDE-3 from the cytoplasm to nucleus and nucleolus, in which the risiRNA/NRDE complex binds to pre-rRNA and silences rRNA expression. Interestingly, when C. elegans is exposed to environmental stimuli, such as cold shock and ultraviolet illumination, risiRNAs accumulate and further turn on the nuclear RNAi-mediated gene silencing pathway. risiRNA may act in a quality control mechanism of rRNA homeostasis. When the exoribonuclease SUSI-1(ceDis3L2) is mutated, risiRNAs are dramatically increased. In this Point of View article, we will summarize our understanding of the small antisense ribosomal siRNAs in a variety of organisms, especially C. elegans, and their possible roles in the quality control mechanism of rRNA homeostasis.


Assuntos
Caenorhabditis elegans/genética , Interferência de RNA , Precursores de RNA/genética , RNA Ribossômico/genética , RNA Interferente Pequeno/genética , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Homeostase , Neurospora crassa/genética , Neurospora crassa/metabolismo , Ligação Proteica , Transporte Proteico , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética
14.
Nature ; 465(7301): 1097-101, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20543824

RESUMO

Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that regulate heterochromatin formation, developmental timing, defence against parasitic nucleic acids and genome rearrangement. Many small regulatory RNAs are thought to function in nuclei. For instance, in plants and fungi, short interfering RNA (siRNAs) associate with nascent transcripts and direct chromatin and/or DNA modifications. To understand further the biological roles of small regulatory RNAs, we conducted a genetic screen to identify factors required for RNA interference (RNAi) in Caenorhabditis elegans nuclei. Here we show that the gene nuclear RNAi defective-2 (nrde-2) encodes an evolutionarily conserved protein that is required for siRNA-mediated silencing in nuclei. NRDE-2 associates with the Argonaute protein NRDE-3 within nuclei and is recruited by NRDE-3/siRNA complexes to nascent transcripts that have been targeted by RNAi. We find that nuclear-localized siRNAs direct an NRDE-2-dependent silencing of pre-messenger RNAs (pre-mRNAs) 3' to sites of RNAi, an NRDE-2-dependent accumulation of RNA polymerase (RNAP) II at genomic loci targeted by RNAi, and NRDE-2-dependent decreases in RNAP II occupancy and RNAP II transcriptional activity 3' to sites of RNAi. These results define NRDE-2 as a component of the nuclear RNAi machinery and demonstrate that metazoan siRNAs can silence nuclear-localized RNAs co-transcriptionally. In addition, these results establish a novel mode of RNAP II regulation: siRNA-directed recruitment of NRDE factors that inhibit RNAP II during the elongation phase of transcription.


Assuntos
Caenorhabditis elegans/genética , Interferência de RNA , RNA Polimerase II/antagonistas & inibidores , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sequência Conservada , Genes de Helmintos/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética
15.
PLoS Genet ; 7(8): e1002249, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21901112

RESUMO

In plants and fungi, small RNAs silence gene expression in the nucleus by establishing repressive chromatin states. The role of endogenous small RNAs in metazoan nuclei is largely unknown. Here we show that endogenous small interfering RNAs (endo-siRNAs) direct Histone H3 Lysine 9 methylation (H3K9me) in Caenorhabditis elegans. In addition, we report the identification and characterization of nuclear RNAi defective (nrde)-1 and nrde-4. Endo-siRNA-driven H3K9me requires the nuclear RNAi pathway including the Argonaute (Ago) NRDE-3, the conserved nuclear RNAi factor NRDE-2, as well as NRDE-1 and NRDE-4. Small RNAs direct NRDE-1 to associate with the pre-mRNA and chromatin of genes, which have been targeted by RNAi. NRDE-3 and NRDE-2 are required for the association of NRDE-1 with pre-mRNA and chromatin. NRDE-4 is required for NRDE-1/chromatin association, but not NRDE-1/pre-mRNA association. These data establish that NRDE-1 is a novel pre-mRNA and chromatin-associating factor that links small RNAs to H3K9 methylation. In addition, these results demonstrate that endo-siRNAs direct chromatin modifications via the Nrde pathway in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Cromatina/metabolismo , Metilação de DNA/genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética
16.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948723

RESUMO

Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2- based and functional reporter screens in C. elegans to identify a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. Deleting C. elegans ERGU-1 causes excessive H2O2 and transcriptional gene up- regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behaviors. Both C. elegans and human ERGU-1 proteins localize to ER membranes and form network reticulum structures. We name this system ER-GUARD, E ndoplasmic R eticulum Gu ardian A egis of R edox D efense. Human and Drosophila homologs of ERGU-1 can rescue C. elegans mutant phenotypes, demonstrating evolutionarily ancient and conserved functions. Together, our results reveal an ER-membrane-specific protein machinery and defense-net system ER-GUARD for peroxide detoxification and suggest a previously unknown but conserved pathway for antioxidant defense in animal cells.

17.
Redox Biol ; 73: 103174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701646

RESUMO

Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias , Proteínas Ribossômicas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Mitocôndrias/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ribossomos/metabolismo , Sistema de Sinalização das MAP Quinases
18.
Sci Adv ; 10(4): eadj3880, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266092

RESUMO

Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here, we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. Increased TSP-1 abundance persists even after transient early-life heat stress. Such regulation requires CBP-1, a histone acetyltransferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.


Assuntos
Experiências Adversas da Infância , Proteínas de Caenorhabditis elegans , Resiliência Psicológica , Adulto , Humanos , Animais , Longevidade , Trombospondina 1 , Caenorhabditis elegans , Tetraspaninas/genética , Fatores de Transcrição , Proteínas de Caenorhabditis elegans/genética , Histona Acetiltransferases
19.
Nat Commun ; 14(1): 1254, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878913

RESUMO

The chromatin organization modifier domain (chromodomain) is an evolutionally conserved motif across eukaryotic species. The chromodomain mainly functions as a histone methyl-lysine reader to modulate gene expression, chromatin spatial conformation and genome stability. Mutations or aberrant expression of chromodomain proteins can result in cancer and other human diseases. Here, we systematically tag chromodomain proteins with green fluorescent protein (GFP) using CRISPR/Cas9 technology in C. elegans. By combining ChIP-seq analysis and imaging, we delineate a comprehensive expression and functional map of chromodomain proteins. We then conduct a candidate-based RNAi screening and identify factors that regulate the expression and subcellular localization of the chromodomain proteins. Specifically, we reveal an H3K9me1/2 reader, CEC-5, both by in vitro biochemistry and in vivo ChIP assays. MET-2, an H3K9me1/2 writer, is required for CEC-5 association with heterochromatin. Both MET-2 and CEC-5 are required for the normal lifespan of C. elegans. Furthermore, a forward genetic screening identifies a conserved Arginine124 of CEC-5's chromodomain, which is essential for CEC-5's association with chromatin and life span regulation. Thus, our work will serve as a reference to explore chromodomain functions and regulation in C. elegans and allow potential applications in aging-related human diseases.


Assuntos
Envelhecimento , Caenorhabditis elegans , Animais , Humanos , Envelhecimento/genética , Caenorhabditis elegans/genética , Cromatina/genética , Proteínas de Fluorescência Verde , Longevidade , Histonas/metabolismo
20.
Cell Rep ; 42(8): 112915, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37537842

RESUMO

The nucleolus is the most prominent membraneless organelle within the nucleus. How the nucleolar structure is regulated is poorly understood. Here, we identified two types of nucleoli in C. elegans. Type I nucleoli are spherical and do not have visible nucleolar vacuoles (NoVs), and rRNA transcription and processing factors are evenly distributed throughout the nucleolus. Type II nucleoli contain vacuoles, and rRNA transcription and processing factors exclusively accumulate in the periphery rim. The NoV contains nucleoplasmic proteins and is capable of exchanging contents with the nucleoplasm. The high-order structure of the nucleolus is dynamically regulated in C. elegans. Faithful rRNA processing is important to prohibit NoVs. The depletion of 27SA2 rRNA processing factors resulted in NoV formation. The inhibition of RNA polymerase I (RNAPI) transcription and depletion of two conserved nucleolar factors, nucleolin and fibrillarin, prohibits the formation of NoVs. This finding provides a mechanism to coordinate structure maintenance and gene expression.


Assuntos
Caenorhabditis elegans , Proteínas Nucleares , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Nucleares/metabolismo , Vacúolos/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Ribossômico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA