Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401714, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860887

RESUMO

A chromium complex carrying two benzanellated N-heterocyclic phosphenium (bzNHP) ligands was prepared by a salt metathesis approach. Spectroscopic studies suggest that the anellation enhances the π-acceptor ability of the NHP-units, which is confirmed by the facile electrochemical reduction of the complex to a spectroscopically characterized radical anion. Co-photolysis with H2 allowed extensive conversion into a σ-H2-complex, which shows a diverse reactivity towards donors and isomerizes under H-H bond fission and shift of a hydride to a P-ligand. The product carrying phosphenium, phosphine and hydride ligands was also synthesized independently and reacts reversibly with CO and MeCN to yield bis-phosphine complexes under concomitant Cr-to-P-shift of a hydride. In contrast, CO2 was not only bound but reduced to give an isolable formato complex, which reacted with ammonia borane under partial recovery of the metal hydride and production of formate. Further elaboration of the reactions of the chromium complexes with CO2 and NH3BH3 allowed to demonstrate the feasibility of a Cr-catalyzed transfer hydrogenation of CO2 to methanol. The various complexes described were characterized spectroscopically and in several cases by XRD studies. Further insights in reactivity patterns were provided through (spectro)electrochemical studies and DFT calculations.

2.
Chemistry ; 29(66): e202302525, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37650872

RESUMO

The reactions of two complexes [(R NHP)Mn(CO)4 ] (R NHP=N-arylated N-heterocyclic phosphenium) with H2 at elevated pressure (≈4 bar) were studied by NMR spectroscopy. Irradiation with UV light initialized in one case (5 a, R=Dipp) the unselective formation of (R NHP-H)MnH(CO)4 ] (6 a) via cooperative addition of H2 across the Mn=P double bond. In the other case (5 b, R=Mes), addition of H2 was unobservable and the reaction proceeded via decarbonylation to a dimeric species [(R NHP)2 Mn2 (CO)7 ] (7 b) that was isolated and identified spectroscopically. Taking into account the outcome of further reaction studies under various conditions in the absence and presence of H2 , both transformations can be explained in the context of a common mechanism involving decarbonylation to 7 a,b as the first step, and the different outcome is attributable to the fact that 7 b is unreactive towards both H2 and CO while 7 a is not. DFT studies relate this divergence to deviations in the molecular constitution and stability arising from a different level of steric congestion. Preliminary studies suggest further that 5 a/H2 as well as 6 a enable the photo-induced hydrogenation of styrene to ethyl benzene, even if the mechanism and possibly catalytic nature of this process remain yet unknown.

3.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897922

RESUMO

The successful use of 1,3,4,2-triazaphospholenes (TAPs) as organo-catalysts stresses the need for efficient synthetic routes to these molecules. In this study, we establish the [1 + 4]-cycloaddition of PBr3 to azo-pyridines as a new approach to preparing pyrido-annellated TAPs in a single step from easily available precursors. The modular assembly of the azo-component via condensation of primary amines and nitroso compounds along with the feasibility of post-functionalization at the P-Br bond under conservation of the heterocyclic structure allows, in principle, to address a wide range of target molecules, which is illustrated by prototypical examples. The successful synthesis of a transition metal complex confirms for the first time the ability of a TAP to act as a P-donor ligand. Crystallographic studies suggest that hyperconjugation effects and intermolecular interactions induce a qualitatively similar ionic polarization of the P-Br bonds in TAPs as in better known isoelectronic diazaphospholenes.

4.
Chemistry ; 27(17): 5412-5416, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33497004

RESUMO

Unprecedented metalated phosphonite boranes were prepared from PH-substituted precursors and silyl amides. Although potassium derivatives were thermally stable and could even be isolated and structurally characterised, lithiated analogues proved to be unstable towards self-condensation under cleavage of LiOR at ambient temperature. Reaction studies revealed that the metalated phosphonite boranes exhibit ambiphilic character. Their synthetic potential as nucleophilic building blocks was demonstrated in the synthesis of the first stannylated phosphonite representing a new structural motif in phosphine chemistry.

5.
Chemistry ; 26(31): 7008-7017, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011786

RESUMO

Solutions of gallium trihalides GaX3 (X=F, Cl, Br, I) and their ammoniates in liquid ammonia were studied at ambient temperature under autogenous pressure by multinuclear (71 Ga, 35 Cl, 81 Br) NMR spectroscopy. To unravel the role of pH, the analyses were done both in absence and in presence of ammonium halides, which are employed as mineralizers during ammonoacidic gallium nitride crystal growth. While gallium trifluoride and its ammoniate were found to be too sparingly soluble to give rise to a NMR signal, the spectra of solutions of the heavier halides reveal the presence of a single gallium-containing species in all cases. DFT calculations and molecular dynamics simulations suggest the identification of this species as consisting of a [Ga(NH3 )6 ]3+ cation and up to six surrounding halide anions, resulting in an overall trend towards negative complex charge. Quantitative 71 Ga NMR studies on saturated solutions of GaCl3 containing various amounts of additional NH4 Cl revealed a near linear increase of GaCl3 solubility with mineralizer concentration of about 0.023 mol GaCl3 per mol NH4 Cl at room temperature. These findings reflect the importance of Coulombic shielding for the inhibition of oligomerization and precipitation processes and help to rationalize both the low solubility of gallium halides in neutral ammonia solution and, in turn, the proliferating effect of the mineralizer during ammonoacidic gallium nitride formation.

6.
Chemistry ; 26(66): 15190-15199, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32567741

RESUMO

Metalation of secondary diaminophosphine boranes by alkali metal amides provides a robust and selective access route to a range of metal diaminophosphide boranes M[(R2 N)2 P(BH3 )] (M=Li, Na, K; R=alkyl, aryl) with acyclic or heterocyclic molecular backbones, whereas reduction of a chlorodiaminophosphine borane gave less satisfactory results. The metalated species were characterized in situ by NMR spectroscopy and in two cases isolated as crystalline solids. Single-crystal XRD studies revealed the presence of salt-like structures with strongly interacting ions. Synthetic applications of K[(R2 N)2 P(BH3 )] were studied in reactions with a 1,2-dichlorodisilane and CS2 , which afforded either mono- or difunctional phosphine boranes with a rare combination of electronegative amino and electropositive functional disilanyl groups on phosphorus, or a phosphinodithioformate. Spectroscopic studies gave a first hint that removal of the borane fragment may be feasible.

8.
Inorg Chem ; 58(9): 6517-6528, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017775

RESUMO

N-Heterocyclic phosphenium (NHP) and nitrosonium (NO+) ligands are often viewed as isolobal analogues that share the capability to switch between different charge states and thus display redox "noninnocent" behavior. We report here on mixed complexes [(NHP)M(CO) n(NO)] (M = Fe, Cr; n = 2, 3), which permit evaluating the donor/acceptor properties of both types of ligands and their interplay in a single complex. The crystalline target compounds were obtained from reactions of N-heterocyclic phosphenium triflates with PPN[Fe(CO)3(NO)] or PPN[Cr(CO)4(NO)], respectively, and fully characterized (PPN = nitride-bistriphenylphosphonium cation). The structural and spectroscopic (IR, UV-vis) data support the presence of carbene-analogue NHP ligands with an overall positive charge state and π-acceptor character. Even if the structural features of the M-NO unit were in all but one product blurred by crystallographic CO/NO disorder, spectroscopic studies and the structural data of the remaining compound suggest that the NO units exhibit nitroxide (NO-) character. This assignment was validated by computational studies, which reveal also that the electronic structure of iron NHP/NO complexes is closely akin to that of the Hieber anion, [Fe(CO)3(NO)]-. The electrophilic character of the NHP units is further reflected in the chemical behavior of the mixed complexes. Cyclic voltammetry and IR-SEC studies revealed that complex [(NHP)Fe(CO)2(NO)] (4) undergoes chemically reversible one-electron reduction. Computational studies indicate that the NHP unit in the resulting product carries significant radical character, and the reduction may thus be classified as predominantly ligand-centered. Reaction of 4 with sodium azide proceeded likewise under nucleophilic attack at phosphorus and decomplexation, while super hydride and methyl lithium reacted with all chromium and iron complexes via transfer of a hydride or methyl anion to the NHP unit to afford anionic phosphine complexes. Some of these species were isolated after cation exchange or trapped with electrophiles (H+, SnPh3+) to afford neutral complexes representing the products of a formal hydrogenation or hydrostannylation of the original M═P double bond.

9.
Chemistry ; 23(48): 11560-11569, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28560855

RESUMO

A neutral N-heterocyclic phosphenium complex of manganese was synthesised by a metathesis approach and characterised by IR, NMR, and XRD studies. The short P-Mn distance suggests a substantial metal-ligand double bond character. Reaction with a hydride produced an anionic phosphine complex, which was also characterised by IR and NMR spectroscopy and, after anion exchange, a single-crystal XRD study. Protonation of the anion occurs at the metal to yield a neutral phosphine metal carbonyl hydride, which releases dihydrogen upon irradiation with UV light. These reactions confirm the electrophilic nature of the phosphenium ligand and suggest that the title complex might undergo reactions displaying metal-ligand cooperativity. Surprisingly, reaction with ammonia borane (AB) did not proceed under transfer hydrogenation of the Mn=P double bond but through the catalytic dehydrogenation of AB. The phosphenium complex behaves here as a class II catalyst, which dehydrogenates AB to NH2 BH2 that was trapped with cyclohexene. Computational model studies led to the identification of two possible catalytic cycles, which differ in the regioselectivity of the initial AB activation step. In one case, the activation proceeds as cooperative transfer hydrogenation of the Mn=P bond, whereas in the other case a H+ /H- pair is transferred to the phosphorus atom and a nitrogen atom of the phosphenium unit, resulting in a ligand-centred reaction in which the metal fragment acts merely as stabilising substituent. Unexpectedly, this pathway, which constitutes a new reaction mode for phosphenium complexes, seems to be better in accord with experimental findings on the course of the catalysis.

10.
Photochem Photobiol Sci ; 16(7): 1036-1042, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28548158

RESUMO

Hydrogen is considered to be an ideal energy carrier, which produces only water when combined with oxygen and thus has no detrimental effect on the environment. While the catalytic decomposition of hydrous hydrazine for the production of hydrogen is well explored, little is known about its photocatalytic decomposition. The present paper describes a highly efficient photochemical methodology for the production of hydrogen through the decomposition of aqueous hydrazine using titanium dioxide nanoparticles modified with a Rh(i) coordinated catechol phosphane ligand (TiO2-Rh) as a photocatalyst under visible light irradiation. After 12 h of visible light irradiation, the hydrogen yield was 413 µmol g-1 cat with a hydrogen evolution rate of 34.4 µmol g-1 cat h-1. Unmodified TiO2 nanoparticles offered a hydrogen yield of 83 µmol g-1 cat and a hydrogen evolution rate of only 6.9 µmol g-1 cat h-1. The developed photocatalyst was robust under the experimental conditions and could be efficiently reused for five subsequent runs without any significant change in its activity. The higher stability of the photocatalyst is attributed to the covalent attachment of the Rh complex, whereas the higher activity is believed to be due to the synergistic mechanism that resulted in better electron transfer from the Rh complex to the conduction band of TiO2.

11.
Inorg Chem ; 56(5): 3071-3080, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218839

RESUMO

The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides RNHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with DippNHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [(DippNHP)(DippNHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected MesNHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{(MesNHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with µ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear (1H, 31P, 195Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [(DippNHP)(DippNHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

12.
Angew Chem Int Ed Engl ; 56(49): 15718-15722, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28980421

RESUMO

The reaction of an N-heterocyclic phosphenium complex of manganese with MeLi/Et3 NHCl under formal addition of CH4 to the Mn=P double bond can be reversed upon UV photolysis, providing a rare example for selective P-C(alkyl) bond activation. Action of LDA on the phosphenium complex does not proceed via attack at phosphorus but rather via C4-deprotonation to yield a unique P-analogue of an "abnormal" carbene. A transmetalation product of the original complex was fully characterized. The C-metalation is also applicable to bis-phosphenium complexes of other metals.

13.
Inorg Chem ; 55(12): 6186-94, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27248369

RESUMO

A synthetic protocol to synthesize 2-bromobenzo-1,3,2-dithiaboroles in one step from easily accessible benzene bis(isopropyl thioether)s has been developed. The reaction is remarkably specific in converting substrates with two adjacent (i)PrS moieties while leaving isolated thioether functions and other functional groups intact. On the basis of the spectroscopic detection or isolation of reaction intermediates, a mechanistic explanation involving a neighbor-group-assisted dealkylation as a key step is proposed. The resulting products featuring one or two dithiaborole units were isolated in good yields and fully characterized. Subsequent methanolysis, which was carried out either as a separate reaction step or in the manner of a one-pot reaction, gave rise to functionally substituted benzenedithiols. The feasibility of a methylphosphoryl-substituted benzenedithiol to act as a dianionic S,S-chelating ligand was demonstrated with the formation of paramagnetic Ni(III) and Co(III) complexes. Selective reduction of the phosphoryl group afforded a rare example of a phosphino dithiol which was shown to act as a monoanionic P,S-bidentate ligand toward Pd(II). All complexes were characterized by spectral data and X-ray diffraction studies, and the paramagnetic ones also by superconducting quantum interference device magnetometry.

14.
Angew Chem Int Ed Engl ; 55(5): 1909-11, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26676462

RESUMO

The [B12 H12](2-) anion shows an extensive substitutional chemistry based on its three-dimensional aromaticity. The replacement of functional groups can be attained by electrophilically induced substitution caused by Brønsted or Lewis acidic electrophiles (e.g. Pt(2+)). Until now, it was impossible to structurally characterize a metal-substituted [B12 H12](2-) cage. When an aqueous solution containing both Bi(3+) cations and [B12 H12](2-) anions was heated, the charge-neutral bismuth undecahydro-closo-dodecaborane BiB12 H11 was obtained, representing a new class of metalated [B12 H12](2-) clusters. The title compound was characterized by single-crystal X-ray diffraction and NMR spectroscopic methods. Compared to the typical B-H bond, the short B-Bi single bond (230 pm) exhibits inverted polarity.

15.
Inorg Chem ; 54(17): 8380-7, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26287312

RESUMO

The reactivity of an anionic phosphanylphosphinidene complex of tungsten(VI), [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P═P)]Li·3DME toward PMe3, halogenophosphines, and iodine was investigated. Reaction of the starting complex with Me3P led to formation of a new neutral phosphanylphosphinidene complex, [(2,6-i-Pr2C6H3N)2(Me3P)W(η(2)-t-Bu2P═P)]. Reactions with halogenophosphines yielded new catena-phosphorus complexes. From reaction with Ph2PCl and Ph2PBr, a complex with an anionic triphosphorus ligand t-Bu2P-P((-))-PPh2 was isolated. The main product of reaction with PhPCl2 was a tungsten(VI) complex with a pentaphosphorus ligand, t-Bu2P-P((-))-P(Ph)-P((-))-P-t-Bu2. Iodine reacted with the starting complex as an electrophile under splitting of the P-P bond in the t-Bu2P═P unit to yield [(1,2-η-t-Bu2P-P-P-t-Bu2)W(2,6-i-Pr2C6H3N)2Cl], t-Bu2PI, and phosphorus polymers. The molecular structures of the isolated products in the solid state and in solution were established by single crystal X-ray diffraction and NMR spectroscopy.

16.
Inorg Chem ; 54(12): 5855-63, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26001215

RESUMO

Multinuclear ((31)P, (195)Pt, (19)F) solid-state NMR experiments on (nBu4N)2[(C6F5)2Pt(µ-PPh2)2Pt(C6F5)2] (1), [(C6F5)2Pt(µ-PPh2)2Pt(C6F5)2](Pt-Pt) (2), and cis-Pt(C6F5)2(PHPh2)2 (3) were carried out under cross-polarization/magic-angle-spinning conditions or with the cross-polarization/Carr-Purcell Meiboom-Gill pulse sequence. Analysis of the principal components of the (31)P and (195)Pt chemical shift (CS) tensors of 1 and 2 reveals that the variations observed comparing the isotropic chemical shifts of 1 and 2, commonly referred to as "ring effect", are mainly due to changes in the principal components oriented along the direction perpendicular to the Pt2P2 plane. DFT calculations of (31)P and (195)Pt CS tensors confirmed the tensor orientation proposed from experimental data and symmetry arguments and revealed that the different values of the isotropic shieldings stem from differences in the paramagnetic and spin-orbit contributions.

17.
Angew Chem Int Ed Engl ; 54(39): 11567-71, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26215352

RESUMO

N-Heterocyclic phosphanes react under UV irradiation in a highly selective dehydrocoupling reaction to diphosphanes and H2. Computational studies suggest that the product formation is initiated by the formation of dimeric molecular associates whose electronic excitation yields H2 and a diphosphane. Combining the dehydrocoupling of sterically demanding phosphanes with Mg-reduction of the formed diphosphanes allows constructing a reaction cycle for the photocatalytic reductive generation of H2 from Et3NH(+).

18.
Angew Chem Int Ed Engl ; 53(19): 4753-4, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24718995

RESUMO

Getting heavy: The recently prepared phosphorus analogues of two old acquaintances, urea and dinitrogen tetroxide, bear some structural resemblance to their archetypes but are no carbon copies. Their syntheses and chemical properties reveal rather certain peculiarities, which back the doctrine that the electronic properties of the heavier elements in a group differ from those of the lightest congener.

19.
Chempluschem ; 89(6): e202400144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517052

RESUMO

The synthesis of a new bis-NHP complex (NHP=N-heterocyclic phosphenium) of chromium via salt metathesis and studies of its reactivity are reported. Photochemical reactions with H2 and selected olefins give rise to non-isolable H2- and π-alkene complexes identified spectroscopically, while internal alkynes react via activation of the triple bond to yield isolable metalla-phospha-cyclobutenes characterized by spectroscopic and XRD data. DFT studies give a preliminary account of the bonding in H2- and alkene-complexes and explain the different reactivity towards alkenes and alkynes as the consequence of kinetic effects. Photolysis of the bis-NHP-complex in the presence of H2 and olefins or alkenes enables the catalytic hydrogenation of the organic substrates, while the π-ethene complex mediates the catalytic hydrogenation of ethene in a dark reaction. The similarities and differences between both catalytic processes are shortly discussed.

20.
Inorg Chem ; 52(7): 4104-12, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23514329

RESUMO

Condensation of octahydro-2,2'-bipyrimidine with P(NMe2)3 gave a 1,3,2-diazaphospholidine-4,5-diimine 4a in which the "open" (exo/exo) conformation of the diimine unit was enforced by incorporation into a tricyclic molecular backbone. The coordination behavior of this potentially ambident ligand was sampled in reactions with ([(nbd)W(CO)4] and [CpCo(CO)2]) and pnictogen halides ECl3 (E = P, As, Sb). While PCl3 reacted under ring metathesis, all other reactions gave isolable complexes of composition (4a)MLn (MLn = W(CO)5, CpCo(CO), AsCl3, SbCl3); attempted recrystallization of the As-adduct yielded a complex (4a)(AsCl3)2 which was also accessible from reaction of 4a with 2 equiv of AsCl3. Single-crystal X-ray diffraction studies revealed that the ligand in [(4a)W(CO)5] and [(4a)CpCo(CO)] binds through its phosphorus lone-pair; [(4a)SbCl3] and [(4a)(AsCl3)2] contain a T-shaped ECl3 unit which binds to the chelating diimine moiety, and associate further via chloride bridges to give centrosymmetric dimers. Reactions of 4a with excess metal substrates gave no evidence that formation of bimetallic complexes with µ-bridging 1κ(2)(N,N')-2κP-coordination is feasible; the extra AsCl3 moiety in [(4a)(AsCl3)2] avoids this coordination mode by interacting with the peripheral chlorides of the central core. The observed selectivity suggests that ligand 4a specifically addresses transition metal centers with low positive charge and some back-bonding capacity through the phosphorus lone-pair, and electrophiles that behave essentially as "pure" Lewis acids through the diimine unit. This assumption was confirmed by DFT studies which disclosed further that binding of the first metal center deactivates the opposite binding site and thus strongly inhibits the formation of dinuclear complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA