RESUMO
Tropical peatlands cycle and store large amounts of carbon in their soil and biomass1-5. Climate and land-use change alters greenhouse gas (GHG) fluxes of tropical peatlands, but the magnitude of these changes remains highly uncertain6-19. Here we measure net ecosystem exchanges of carbon dioxide, methane and soil nitrous oxide fluxes between October 2016 and May 2022 from Acacia crassicarpa plantation, degraded forest and intact forest within the same peat landscape, representing land-cover-change trajectories in Sumatra, Indonesia. This allows us to present a full plantation rotation GHG flux balance in a fibre wood plantation on peatland. We find that the Acacia plantation has lower GHG emissions than the degraded site with a similar average groundwater level (GWL), despite more intensive land use. The GHG emissions from the Acacia plantation over a full plantation rotation (35.2 ± 4.7 tCO2-eq ha-1 year-1, average ± standard deviation) were around two times higher than those from the intact forest (20.3 ± 3.7 tCO2-eq ha-1 year-1), but only half of the current Intergovernmental Panel on Climate Change (IPCC) Tier 1 emission factor (EF)20 for this land use. Our results can help to reduce the uncertainty in GHG emissions estimates, provide an estimate of the impact of land-use change on tropical peat and develop science-based peatland management practices as nature-based climate solutions.
Assuntos
Florestas , Gases de Efeito Estufa , Solo , Madeira , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Indonésia , Metano/análise , Óxido Nitroso/análise , Madeira/química , IncertezaRESUMO
Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the more than 90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur cotranscriptionally, and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We show that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of â¼151 bp, among the smallest periodicities reported. Our analysis has revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint favoring introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for nonsense-mediated decay effectors, we show that introns located at the edge of nucleosomes display higher splicing efficiency than those at the center. However, multiple regression analysis indicates that the low GC content of introns, rather than nucleosome positioning, is associated with high splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning, and intron evolution in Paramecium.
Assuntos
Nucleossomos , Paramecium , Composição de Bases , Éxons , Íntrons/genética , Nucleossomos/genética , Paramecium/genética , Splicing de RNA/genéticaRESUMO
Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.
Assuntos
Duplicação Gênica , Paramecium , Animais , Paramecium/genética , Genoma , Dosagem de Genes , Vertebrados/genética , Evolução Molecular , FilogeniaRESUMO
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.
Assuntos
Éxons , Genoma de Protozoário , Células Germinativas , Paramecium tetraurellia/genética , Proteínas de Protozoários/genética , Elementos de DNA Transponíveis , Evolução MolecularRESUMO
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFß pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.
Assuntos
Diferenciação Celular , Polpa Dentária , Neurônios , Gânglio Espiral da Cóclea , Polpa Dentária/citologia , Humanos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Ratos , Neurônios/metabolismo , Neurônios/citologia , Células Cultivadas , Nervo Coclear/citologia , Nervo Coclear/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , NeurogêneseRESUMO
A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3.
Assuntos
Autoantígenos/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , DNA/genética , Deleção de Sequência/genética , Divisão Celular/genética , Núcleo Celular/genética , Proteína Centromérica A , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Histonas/genética , Paramecium/genética , Transposases/genéticaRESUMO
BACKGROUND: DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. RESULTS: We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. CONCLUSIONS: We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.
Assuntos
Elementos de DNA Transponíveis/genética , DNA de Protozoário/genética , Citometria de Fluxo , Paramecium/citologia , Paramecium/genética , GenômicaRESUMO
Amylosucrases are sucrose-utilizing α-transglucosidases that naturally catalyze the synthesis of α-glucans, linked exclusively through α1,4-linkages. Side products and in particular sucrose isomers such as turanose and trehalulose are also produced by these enzymes. Here, we report the first structural and biophysical characterization of the most thermostable amylosucrase identified so far, the amylosucrase from Deinoccocus geothermalis (DgAS). The three-dimensional structure revealed a homodimeric quaternary organization, never reported before for other amylosucrases. A sequence signature of dimerization was identified from the analysis of the dimer interface and sequence alignments. By rigidifying the DgAS structure, the quaternary organization is likely to participate in the enhanced thermal stability of the protein. Amylosucrase specificity with respect to sucrose isomer formation (turanose or trehalulose) was also investigated. We report the first structures of the amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea in complex with turanose. In the amylosucrase from N. polysaccharea (NpAS), key residues were found to force the fructosyl moiety to bind in an open state with the O3' ideally positioned to explain the preferential formation of turanose by NpAS. Such residues are either not present or not similarly placed in DgAS. As a consequence, DgAS binds the furanoid tautomers of fructose through a weak network of interactions to enable turanose formation. Such topology at subsite +1 is likely favoring other possible fructose binding modes in agreement with the higher amount of trehalulose formed by DgAS. Our findings help to understand the inter-relationships between amylosucrase structure, flexibility, function, and stability and provide new insight for amylosucrase design.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Deinococcus/genética , Dimerização , Dissacarídeos/química , Dissacarídeos/metabolismo , Estabilidade Enzimática , Frutose/química , Frutose/metabolismo , Glucose/metabolismo , Glucosiltransferases/genética , Temperatura Alta , Isomerismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Sacarose/químicaRESUMO
Progress in sample preparation for scRNA-seq is reported based on RevGel-seq, a reversible-hydrogel technology optimized for samples of fresh cells. Complexes of one cell paired with one barcoded bead are stabilized by a chemical linker and dispersed in a hydrogel in the liquid state. Upon gelation on ice the complexes are immobilized and physically separated without requiring nanowells or droplets. Cell lysis is triggered by detergent diffusion, and RNA molecules are captured on the adjacent barcoded beads for further processing with reverse transcription and preparation for cDNA sequencing. As a proof of concept, analysis of PBMC using RevGel-seq achieves results similar to microfluidic-based technologies when using the same original sample and the same data analysis software. In addition, a clinically relevant application of RevGel-seq is presented for pancreatic islet cells. Furthermore, characterizations carried out on cardiomyocytes demonstrate that the hydrogel technology readily accommodates very large cells. Standard analyses are in the 10,000-input cell range with the current gelation device, in order to satisfy common requirements for single-cell research. A convenient stopping point after two hours has been established by freezing at the cell lysis step, with full preservation of gene expression profiles. Overall, our results show that RevGel-seq represents an accessible and efficient instrument-free alternative, enabling flexibility in terms of experimental design and timing of sample processing, while providing broad coverage of cell types.
Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Análise de Sequência de RNA/métodos , Hidrogéis/química , Análise de Célula Única/métodos , Humanos , Animais , Camundongos , Perfilação da Expressão GênicaRESUMO
Iterative saturation mutagenesis and combinatorial active site saturation focused on vicinal amino acids were used to alter the acceptor specificity of amylosucrase from Neisseria polysaccharea , a sucrose-utilizing α-transglucosidase, and sort out improved variants. From the screening of three semirational sublibraries accounting in total for 20,000 variants, we report here the isolation of three double mutants of N. polysaccharea amylosucrase displaying a spectacular specificity enhancement toward both sucrose, the donor substrate, and the allyl 2-acetamido-2-deoxy-α-D-glucopyranoside acceptor as compared to the wild-type enzyme. Such levels of activity improvement have never been reported before for this class of carbohydrate-active enzymes. X-ray structure of the best performing enzymes supported by molecular dynamics simulations showed local rigidity of the -1 subsite as well as flexibility of loops involved in active site topology, which both account for the enhanced catalytic performances of the mutants. The study well illustrates the importance of taking into account the local conformation of catalytic residues as well as protein dynamics during the catalytic process, when designing enzyme libraries.
Assuntos
Aminoácidos/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Neisseria/enzimologia , Oligossacarídeos/biossíntese , Biocatálise , Estabilidade Enzimática , Variação Genética/genética , Glucosiltransferases/isolamento & purificação , Glicosilação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Oligossacarídeos/químicaRESUMO
An affinity purification strategy was developed to characterize human proteasome complexes diversity as well as endogenous proteasome-interacting proteins (PIPs). This single step procedure, initially used for 20 S proteasome purification, was adapted to purify all existing physiological proteasome complexes associated to their various regulatory complexes and to their interacting partners. The method was applied to the purification of proteasome complexes and their PIPs from human erythrocytes but can be used to purify proteasomes from any human sample as starting material. The benefit of in vivo formaldehyde cross-linking as a stabilizer of protein-protein interactions was studied by comparing the status of purified proteasomes and the identified proteins in both protocols (with or without formaldehyde cross-linking). Subsequent proteomics analyses identified all proteasomal subunits, known regulators, and recently assigned partners. Moreover other proteins implicated at different levels of the ubiquitin-proteasome system were also identified for the first time as PIPs. One of them, the ubiquitin-specific protease USP7, also known as HAUSP, is an important player in the p53-HDM2 pathway. The specificity of the interaction was further confirmed using a complementary approach that consisted of the reverse immunoprecipitation with HAUSP as a bait. Altogether we provide a valuable tool that should contribute, through the identification of partners likely to affect proteasomal function, to a better understanding of this complex proteolytic machinery in any living human cell and/or organ/tissue and in different cell physiological states.
Assuntos
Cromatografia de Afinidade/métodos , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Animais , Anticorpos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Eletroforese em Gel de Poliacrilamida , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Formaldeído/farmacologia , Humanos , Imunoprecipitação , Camundongos , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteômica , Ratos , Reprodutibilidade dos Testes , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de UbiquitinaRESUMO
Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene cause very early onset inflammatory bowel diseases (VOIBD) or multiple intestinal atresia associated with immune deficiency of various severities, ranging from combined immune deficiency to mild lymphopenia. In this manuscript, we report the clinical, biological and molecular features of a patient born from consanguineous parents, presenting with recurrent lymphoproliferative syndrome and pan-hypergammaglobulinemia associated with chronic intestinal pseudo obstruction (CIPO). Genetic screening revealed the novel c.974G>A (p.R325Q) mutation in homozygosity in the TTC7A gene. The patient's phenotype differs significantly from that previously associated with TTC7A deficiency in humans. It becomes closer to the one reported in the ttc7a-deficient mice that invariably develop a proliferative lymphoid and myeloid disorder. Functional studies showed that the extreme variability in the clinical phenotype couldn't be explained by the cellular phenotype. Indeed, the patient's TTC7A mutation, as well as the murine-ttc7 mutant, have the same functional impact on protein expression, DNA instability and chromatin compaction, as the other mutations that lead to classical TTC7A-associated phenotypes. Co-inheritance of genetic variants may also contribute to the unique nature of the patient's phenotype. The present case report shows that the clinical spectrum of TTC7A deficiency is much broader than previously suspected. Our findings should alert the physicians to consider screening of TTC7A mutations in patients with lymphoproliferative syndrome and hypergammaglobulinemia and/or chronic intestinal pseudo-obstruction.
Assuntos
Pseudo-Obstrução Intestinal/etiologia , Transtornos Linfoproliferativos/etiologia , Deficiência de Proteína , Proteínas/fisiologia , Animais , Células Cultivadas , Doença Crônica , Consanguinidade , Feminino , Humanos , Lactente , Pseudo-Obstrução Intestinal/genética , Transtornos Linfoproliferativos/genética , Masculino , Camundongos , Proteínas/genéticaRESUMO
In the version of this article originally published, the main-text sentence "In three patients of European ancestry, we identified the germline variant encoding p.Ile97Met in TIM-3, which was homozygous in two (P12 and P13) and heterozygous in one (P15) in the germline but with no TIM-3 plasma membrane expression in the tumor" misstated the identifiers of the two homozygous individuals, which should have been P13 and P14. The error has been corrected in the HTML, PDF and print versions of the paper.
RESUMO
Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely con- strained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, 'what the atmosphere sees.' The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.
RESUMO
Subcutaneous panniculitis-like T cell lymphoma (SPTCL), a non-Hodgkin lymphoma, can be associated with hemophagocytic lymphohistiocytosis (HLH), a life-threatening immune activation that adversely affects survival1,2. T cell immunoglobulin mucin 3 (TIM-3) is a modulator of immune responses expressed on subgroups of T and innate immune cells. We identify in ~60% of SPTCL cases germline, loss-of-function, missense variants altering highly conserved residues of TIM-3, c.245A>G (p.Tyr82Cys) and c.291A>G (p.Ile97Met), each with specific geographic distribution. The variant encoding p.Tyr82Cys TIM-3 occurs on a potential founder chromosome in patients with East Asian and Polynesian ancestry, while p.Ile97Met TIM-3 occurs in patients with European ancestry. Both variants induce protein misfolding and abrogate TIM-3's plasma membrane expression, leading to persistent immune activation and increased production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1ß, promoting HLH and SPTCL. Our findings highlight HLH-SPTCL as a new genetic entity and identify mutations causing TIM-3 alterations as a causative genetic defect in SPTCL. While HLH-SPTCL patients with mutant TIM-3 benefit from immunomodulation, therapeutic repression of the TIM-3 checkpoint may have adverse consequences.
Assuntos
Mutação em Linhagem Germinativa , Receptor Celular 2 do Vírus da Hepatite A/genética , Linfo-Histiocitose Hemofagocítica/genética , Linfoma de Células T/genética , Paniculite/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Diagnóstico Diferencial , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Linfo-Histiocitose Hemofagocítica/classificação , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfoma de Células T/classificação , Linfoma de Células T/diagnóstico , Masculino , Pessoa de Meia-Idade , Paniculite/classificação , Paniculite/diagnóstico , Linhagem , Sequenciamento do Exoma , Adulto JovemRESUMO
An equilibrator system connected to an infrared photo acoustic gas analyzer was used in order to measure directly in situ the concentrations of dissolved CO2 and CH4 in waters of a tropical reservoir (Petit Saut, French Guiana). The performance of the system was tested both on a vertical profile in the stratified water body of the reservoir and in the surface waters of the river downstream the dam. Results agreed with conventional GC analysis at +/-15% in a wide range of concentrations (CO2:50-400 micromol l-1 and CH4:0.5-350 micromol l-1 corresponding to gas partial pressures of respectively 1700-13,000 and 12-8800 microatm). The time needed for in situ measurements was equivalent to water sampling, time for GC analysis in the laboratory being suppressed. The continuous monitoring of gas concentrations for 24 h in the reservoir surface waters revealed rapid changes in concentrations highly significant in the daily emission budget. The system opens new perspectives for the monitoring of gas concentrations in highly dynamic systems like tropical reservoirs.
Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Metano/análise , Monitoramento Ambiental/instrumentação , Água Doce/análise , Efeito Estufa , Clima Tropical , Abastecimento de Água/análiseRESUMO
Panton-Valentine leukocidin (PVL), a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kdâ¼10(-10) M) compared to the class F component of PVL, LukF-PV (Kdâ¼10(-9) M). Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.
Assuntos
Toxinas Bacterianas/química , Exotoxinas/química , Leucocidinas/química , Mutação , Neutrófilos/química , Tirosina/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Sítios de Ligação , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Exotoxinas/genética , Expressão Gênica , Humanos , Cinética , Leucocidinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Staphylococcus aureus/química , Tirosina/genéticaRESUMO
Gross CO2 and CH4 emissions (degassing and diffusion from the reservoir) and the carbon balance were assessed in 2009-2010 in two Southeast Asian sub-tropical reservoirs: the Nam Ngum and Nam Leuk Reservoirs (Lao PDR). These two reservoirs are within the same climatic area but differ mainly in age, size, residence time and initial biomass stock. The Nam Leuk Reservoir was impounded in 1999 after partial vegetation clearance and burning. However, GHG emissions are still significant 10 years after impoundment. CH4 diffusive flux ranged from 0.8 (January 2010) to 11.9 mmol m(-2) d(-1) (April 2009) and CO2 diffusive flux ranged from -10.6 (October 2009) to 38.2 mmol m(-2) d(-1) (April 2009). These values are comparable to other tropical reservoirs. Moreover, degassing fluxes at the outlet of the powerhouse downstream of the turbines were very low. The tentative annual carbon balance calculation indicates that this reservoir was a carbon source with an annual carbon export (atmosphere+downstream river) of about 2.2±1.0 GgC yr(-1). The Nam Ngum Reservoir was impounded in 1971 without any significant biomass removal. Diffusive and degassing CO2 and CH4 fluxes were lower than for other tropical reservoirs. Particularly, CO2 diffusive fluxes were always negative with values ranging from -21.2 (April 2009) to -2.7 mmol m(-2) d(-1) (January 2010). CH4 diffusive flux ranged from 0.1 (October 2009) to 0.6 mmol m(-2) d(-1) (April 2009) and no degassing downstream of the turbines was measured. As a consequence of these low values, the reservoir was a carbon sink with an estimated annual uptake of - 53±35 GgC yr(-1).
Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Lagos/química , Metano/análise , Dióxido de Carbono/metabolismo , Lagos/análise , Laos , Metano/metabolismo , Rios/química , Fatores de Tempo , Clima TropicalRESUMO
The reaction of AlMe(3) with (t-Bu(3)PN)(2)TiMe(2) 1 proceeds via competitive reactions of metathesis and C-H activation leading ultimately to two Ti complexes: [(mu(2)-t-Bu(3)PN)Ti(mu-Me)(mu(4)-C)(AlMe(2))(2)](2) 2, [(t-Bu(3)PN)Ti(mu(2)-t-Bu(3)PN)(mu(3)-CH(2))(2)(AlMe(2))(2)(AlMe(3))] 3, and the byproduct (Me(2)Al)(2)(mu-CH(3))(mu-NP(t-Bu(3))) 4. X-ray structural data for 2 and 3 are reported. Compound 3 undergoes thermolysis to generate a new species [Ti(mu(2)-t-Bu(3)PN)(2)(mu(3)-CH(2))(mu(3)-CH)(AlMe(2))(3)] 5. Monitoring of the reaction of 1 with AlMe(3) by (31)P[(1)H] NMR spectroscopy revealed intermediates including (t-Bu(3)PN)TiMe(3) 6. Compound 6 was shown to react with AlMe(3) to give 2 exclusively. Kinetic studies revealed that the sequence of reactions from 6 to 2 involves an initial C-H activation that is a second-order reaction, dependent on the concentration of Ti and Al. The second-order rate constant k(1) was 3.9(5) x 10(-4) M(-1) s(-1) (DeltaH(#) = 63(2) kJ/mol, DeltaS(#) = -80(6) J/mol x K). The rate constants for the subsequent C-H activations leading to 2 were determined to be k(2) = 1.4(2) x 10(-3) s(-1) and k(3) = 7(1) x 10(-3) s(-1). Returning to the more complex reaction of 1, the rate constant for the ligand metathesis affording 4 and 6 was k(met) = 6.1(5) x 10(-5) s(-1) (DeltaH(#) = 37(3) kJ/mol, DeltaS(#) = -203(9) J/mol x K). The concurrent reaction of 1 leading to 3 was found to proceed with a rate constant of k(obs) of 6(1) x 10(-5) s(-1) (DeltaH(#) = 62(5) kJ/mol, DeltaS(#)= -118(17) J/mol x K). Using these kinetic data for these reactions, a stochastic kinetic model was used to compute the concentration profiles of the products and several intermediates with time for reactions using between 10 and 27 equivalents of AlMe(3). These models support the view that equilibrium between 1 x AlMe(3) and 1 x (AlMe(3))(2) accounts for varying product ratios with the concentration of AlMe(3). In a similar vein, similar equilibria account for the transient concentrations of 6 and an intermediate en route to 3. The implications of these reactions and kinetic and thermodynamic data for both C-H bond activation and deactivation pathways for Ti-phosphinimide olefin polymerization catalysts are considered and discussed.