Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 124(17): 1871-81, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21969016

RESUMO

BACKGROUND: Ischemic proliferative retinopathy, characterized by pathological retinal neovascularization, is a major cause of blindness in working-age adults and children. Defining the molecular pathways distinguishing pathological neovascularization from normal vessels is critical to controlling these blinding diseases with targeted therapy. Because mutations in Wnt signaling cause defective retinal vasculature in humans with some characteristics of the pathological vessels in retinopathy, we investigated the potential role of Wnt signaling in pathological retinal vascular growth in proliferative retinopathy. METHODS AND RESULTS: In this study, we show that Wnt receptors (Frizzled4 and low-density lipoprotein receptor-related protein5 [Lrp5]) and activity are significantly increased in pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Loss of Wnt coreceptor Lrp5 and downstream signaling molecule dishevelled2 significantly decreases the formation of pathological retinal neovascularization in retinopathy. Loss of Lrp5 also affects retinal angiogenesis during development and formation of the blood-retinal barrier, which is linked to significant downregulation of tight junction protein claudin5 in Lrp5(-/-) vessels. Blocking claudin5 significantly suppresses Wnt pathway-driven endothelial cell sprouting in vitro and developmental and pathological vascular growth in retinopathy in vivo. CONCLUSIONS: These results demonstrate an important role of Wnt signaling in pathological vascular development in retinopathy and show a novel function of Cln5 in promoting angiogenesis.


Assuntos
Proliferação de Células , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Receptores Frizzled/fisiologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Neovascularização Patológica/metabolismo , Receptores Wnt/fisiologia , Retina/patologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/crescimento & desenvolvimento , Receptores Frizzled/biossíntese , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Proteínas de Membrana Lisossomal , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Neovascularização Patológica/patologia , Receptores Wnt/biossíntese , Retina/crescimento & desenvolvimento , Retina/fisiologia
2.
Circ Res ; 107(4): 495-500, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20634487

RESUMO

RATIONALE: Omega3 long-chain polyunsaturated fatty acids (omega3-PUFAs) are powerful modulators of angiogenesis. However, little is known about the mechanisms governing omega3-PUFA-dependent attenuation of angiogenesis. OBJECTIVE: This study aims to identify a major mechanism by which omega3-PUFAs attenuate retinal neovascularization. METHODS AND RESULTS: Administering omega3-PUFAs exclusively during the neovascular stage of the mouse model of oxygen-induced retinopathy induces a direct neovascularization reduction of more than 40% without altering vasoobliteration or the regrowth of normal vessels. Cotreatment with an inhibitor of peroxisome proliferator-activated receptor (PPAR)gamma almost completely abrogates this effect. Inhibition of PPARgamma also reverses the omega3-PUFA-induced reduction of retinal tumor necrosis factor-alpha, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial selectin, and angiopoietin 2 but not vascular endothelial growth factor. CONCLUSIONS: These results identify a direct, PPARgamma-mediated effect of omega3-PUFAs on retinal neovascularization formation and retinal angiogenic activation that is independent of vascular endothelial growth factor.


Assuntos
Inibidores da Angiogênese/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Neovascularização Patológica/metabolismo , PPAR gama/fisiologia , Doenças Retinianas/metabolismo , Inibidores da Angiogênese/administração & dosagem , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/dietoterapia , Neovascularização Patológica/prevenção & controle , Doenças Retinianas/dietoterapia , Doenças Retinianas/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/fisiologia
3.
Mol Ther ; 19(9): 1602-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21522134

RESUMO

Mutations in over 80 identified genes can induce apoptosis in photoreceptors, resulting in blindness with a prevalence of 1 in 3,000 individuals. This broad genetic heterogeneity of disease impacting a wide range of photoreceptor functions renders the design of gene-specific therapies for photoreceptor degeneration impractical and necessitates the development of mutation-independent treatments to slow photoreceptor cell death. One promising strategy for photoreceptor neuroprotection is neurotrophin secretion from Müller cells, the primary retinal glia. Müller glia are excellent targets for secreting neurotrophins as they span the entire tissue, ensheath all neuronal populations, are numerous, and persist through retinal degeneration. We previously engineered an adeno-associated virus (AAV) variant (ShH10) capable of efficient and selective glial cell transduction through intravitreal injection. ShH10-mediated glial-derived neurotrophic factor (GDNF) secretion from glia, generates high GDNF levels in treated retinas, leading to sustained functional rescue for over 5 months. This GDNF secretion from glia following intravitreal vector administration is a safe and effective means to slow the progression of retinal degeneration in a rat model of retinitis pigmentosa (RP) and shows significant promise as a gene therapy to treat human retinal degenerations. These findings also demonstrate for the first time that glia-mediated secretion of neurotrophins is a promising treatment that may be applicable to other neurodegenerative conditions.


Assuntos
Dependovirus/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Retinose Pigmentar/terapia , Animais , Apoptose , Modelos Animais de Doenças , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/análise , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Mutação , Neuroglia/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Retina/metabolismo , Retinose Pigmentar/fisiopatologia
4.
PLoS Genet ; 5(8): e1000607, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19680541

RESUMO

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.


Assuntos
Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Animais , Cóclea/citologia , Cóclea/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Retina/crescimento & desenvolvimento
5.
J Neurosci ; 30(29): 9695-707, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660252

RESUMO

Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/genética , Memória/fisiologia , Neurônios/metabolismo , Sirtuína 1/genética , Animais , Espinhas Dendríticas/ultraestrutura , Regulação da Expressão Gênica , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/química , Técnicas de Patch-Clamp , Sirtuína 1/análise , Distribuição Tecidual
6.
Front Neuroanat ; 13: 93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849618

RESUMO

Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.

7.
Invest Ophthalmol Vis Sci ; 52(5): 2809-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282584

RESUMO

PURPOSE: Macular telangiectasia (MacTel) is a vision-threatening retinal disease with unknown pathogenesis and no approved treatment. Very low-density lipoprotein receptor mutant mice (Vldlr(-/-)) exhibit critical features of MacTel such as retinal neovascularization and photoreceptor degeneration. In this study, the authors evaluate the therapeutic potential of resveratrol, a plant polyphenol, in Vldlr(-/-) mice as a model for MacTel. METHODS: Vldlr(-/-) and wild-type mice at postnatal day (P) 21 to P60 or P10 to P30 were treated orally with resveratrol. The number of neovascular lesions was evaluated on retinal flatmounts, and resveratrol effects on endothelial cells were assessed by Western blot for phosphorylated ERK1/2, aortic ring, and migration assays. Vegf and Gfap expression was evaluated in laser-capture microdissected retinal layers of angiogenic lesions and nonlesion areas from Vldlr(-/-) and wild-type retinas. RESULTS: From P15 onward, Vldlr(-/-) retinas develop vascular lesions associated with the local upregulation of Vegf in photoreceptors and Gfap in the inner retina. Oral resveratrol reduces lesion formation when administered either before or after disease onset. The reduction of vascular lesions in resveratrol-treated Vldlr(-/-) mice is associated with the suppression of retinal Vegf transcription. Resveratrol also reduces endothelial ERK1/2 signaling as well as the migration and proliferation of endothelial cells. Furthermore, a trend toward increased rhodopsin mRNA in Vldlr(-/-) retinas is observed. CONCLUSIONS: Oral administration of resveratrol is protective against retinal neovascular lesions in Vldlr(-/-) mice by inhibiting Vegf expression and angiogenic activation of retinal endothelial cells. These results suggest that resveratrol might be a safe and effective intervention for treating patients with MacTel.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antioxidantes/administração & dosagem , Modelos Animais de Doenças , Receptores de LDL/genética , Neovascularização Retiniana/prevenção & controle , Telangiectasia Retiniana/prevenção & controle , Estilbenos/administração & dosagem , Administração Oral , Animais , Western Blotting , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Resveratrol , Retina/efeitos dos fármacos , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Telangiectasia Retiniana/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Invest Ophthalmol Vis Sci ; 51(6): 2813-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20484600

RESUMO

The mouse retina has been used extensively over the past decades to study both physiologic and pathologic angiogenesis. Over time, various mouse retina models have evolved into well-characterized and robust tools for in vivo angiogenesis research. This article is a review of the angiogenic development of the mouse retina and a discussion of some of the most widely used vascular disease models. From the multitude of studies performed in the mouse retina, a selection of representative works is discussed in more detail regarding their role in advancing the understanding of both the ocular and general mechanisms of angiogenesis.


Assuntos
Modelos Animais de Doenças , Neovascularização Fisiológica/fisiologia , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/fisiologia , Animais , Camundongos
9.
Nat Protoc ; 4(11): 1565-73, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19816419

RESUMO

The mouse model of oxygen-induced retinopathy (OIR) has been widely used in studies related to retinopathy of prematurity, proliferative diabetic retinopathy and in studies evaluating the efficacy of antiangiogenic compounds. In this model, 7-d-old (P7) mouse pups with nursing mothers are subjected to hyperoxia (75% oxygen) for 5 d, which inhibits retinal vessel growth and causes significant vessel loss. On P12, mice are returned to room air and the hypoxic avascular retina triggers both normal vessel regrowth and retinal neovascularization (NV), which is maximal at P17. Neovascularization spontaneously regresses between P17 and P25. Although the OIR model has been the cornerstone of studies investigating proliferative retinopathies, there is currently no harmonized protocol to assess aspects of angiogenesis and treatment outcome. In this protocol we describe standards for mouse size, sample size, retinal preparation, quantification of vascular loss, vascular regrowth, NV and neovascular regression.


Assuntos
Modelos Animais de Doenças , Camundongos , Neovascularização Patológica/induzido quimicamente , Doenças Retinianas/induzido quimicamente , Vasos Retinianos/fisiologia , Animais , Dissecação , Oxigênio , Regeneração , Retina/patologia , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA