Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Neurobiol Dis ; 199: 106601, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996986

RESUMO

Activation of the purinergic receptor P2X7 (P2X7R) is believed to be deleterious in autoimmune diseases and it was hypothesized to play a role in the pathogenesis of MS. P2X7R is an ATP-gated non-selective cationic channel; its activation can be driven by high concentrations of ATP and leads to the generation of large, cytolytic conductance pores. P2X7R activation can also result in apoptosis as a consequence of the activation of the caspase cascade via P2X7R-dependent stimulation of the NLRP3 inflammasome. We measured P2X7R in oligodendrocyte derived extracellular vesicles (ODEVs) in MS patients and in healthy subjects. Sixty-eight MS patients (50 relapsing-remitting, RR-MS, 18 primary progressive, PP-MS) and 57 healthy controls (HC) were enrolled. ODEVs were enriched from serum by a double step immunoaffinity method using an anti OMGp (oligodendrocyte myelin glycoprotein) antibody. P2X7R concentration was measured in ODEVs lysates by ELISA. One-way Anova test showed that P2X7R in ODEVs is significantly higher in PP-MS (mean: 1742.89 pg/mL) compared both to RR-MS (mean: 1277.33 pg/mL) (p < 0.001) and HC (mean: 879.79 pg/mL) (p < 0.001). Comparison between RR-MS and HC was also statistically significant (p < 0.001). Pearson's correlations showed that P2RX7 in ODEVs was positively correlated with EDSS (p = 0.002, r = 0.38, 0.15-0.57 95% CI) and MSSS (p = 0.004, r = 0.34, 0.12-0.54 95% CI) scores, considering MS patients together (PP-MS + RR-MS) and with disease duration in PP-MS group (p = 0.02, r = 0.53, 0.09-0.80 95% CI). Results suggest that ODEVs-associated P2X7R levels could be a biomarker for MS.


Assuntos
Vesículas Extracelulares , Oligodendroglia , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Oligodendroglia/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Idoso , Esclerose Múltipla Recidivante-Remitente/metabolismo , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/patologia
2.
Neurobiol Dis ; 199: 106605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009097

RESUMO

BACKGROUND: Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS: The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS: We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aß aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION: Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.


Assuntos
Doença de Alzheimer , Caracteres Sexuais , Fatores de Transcrição , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Feminino , Masculino , Transcriptoma , Hipocampo/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256215

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder affecting about 10 million people worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson's Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of clinical trials and the personalization of treatment strategies require the identification of accessible and measurable biomarkers to monitor the events induced by treatment and disease progression and to predict patients' responsiveness. In the present review, we strive to briefly summarize current knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary carriers of disease-associated proteins, with particular attention to those research works that envision possible clinical applications.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Biomarcadores , Encéfalo , Progressão da Doença
4.
Neurobiol Dis ; 176: 105947, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481435

RESUMO

The early differential diagnosis of Parkinson's disease (PD) and atypical Parkinsonian syndromes (APS), including corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), is challenging because of an overlap of clinical features and the lack of reliable biomarkers. Neural-derived extracellular vesicles (NDEVs) isolated from blood provide a window into the brain's biochemistry and may assist in distinguishing between PD and APS. We verified in a case-control study whether oligomeric α-Synuclein and Tau aggregates isolated from NDEVs could allow the differential diagnosis of these conditions. Blood sampling and clinical data, including disease duration, motor severity, global cognition, and levodopa equivalent daily dose (LEDD), were collected from patients with a diagnosis of either PD (n = 70), PSP (n = 21), or CBD (n = 19). NDEVs were isolated from serum by immunocapture using an antibody against the neuronal surface marker L1CAM; oligomeric α-Synuclein and aggregated Tau were measured by ELISA. NDEVs analyses showed that oligomeric α-Synuclein is significantly augmented in PD compared to APS, whereas Tau aggregates are significantly increased in APS compared to PD (p < 0.0001). ROC analyses showed that these two biomarkers have a "good" power of classification (p < 0.0001 for both proteins), with high sensitivity and specificity, with NDEVs concentration of Tau aggregates and oligomeric α-Synuclein being respectively the best biomarker for PD/PSP and PD/CBD diagnostic differentiation. Logistic and multiple regression analysis confirmed that NDEVs-derived oligomeric α-Synuclein and Tau aggregates differentiate PD from CBD and PSP (p < 0.001). Notably, a positive correlation between NDEVs oligomeric α-Synuclein and disease severity (disease duration, p = 0.023; Modified H&Y, p = 0.015; UPDRS motor scores, p = 0.004) was found in PD patients and, in these same patients, NDEVs Tau aggregates concentration inversely correlated with global cognitive scores (p = 0.043). A minimally invasive blood test measuring the concentration of α-synuclein and Tau aggregates in NDEVs can represent a promising tool to distinguish with high sensitivity and specificity PD from CBD or PSP patients. Optimization and validation of these data will be needed to confirm the diagnostic value of these biomarkers in distinguishing synucleinopathies from taupathies.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , alfa-Sinucleína , Estudos de Casos e Controles , Paralisia Supranuclear Progressiva/diagnóstico , Vesículas Extracelulares/metabolismo , Biomarcadores , Proteínas tau
5.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762342

RESUMO

Autism spectrum disorders (ASD) can present with different onset and timing of symptom development; children may manifest symptoms early in their first year of life, i.e., early onset (EO-ASD), or may lose already achieved skills during their second year of life, thus showing a regressive-type onset (RO-ASD). It is still controversial whether regression represents a neurobiological subtype of ASD, resulting from distinct genetic and environmental causes. We focused this study on the 25 kD synaptosomal-associated protein (SNAP-25) gene involved in both post-synaptic formation and adhesion and considered a key player in the pathogenesis of ASD. To this end, four single nucleotide polymorphisms (SNPs) of the SNAP-25 gene, rs363050, rs363039, rs363043, and rs1051312, already known to be involved in neurodevelopmental and psychiatric disorders, were analyzed in a cohort of 69 children with EO-ASD and 58 children with RO-ASD. Both the rs363039 G allele and GG genotype were significantly more frequently carried by patients with EO-ASD than those with RO-ASD and healthy controls (HC). On the contrary, the rs1051312 T allele and TT genotype were more frequent in individuals with RO-ASD than those with EO-ASD and HC. Thus, two different SNAP-25 alleles/genotypes seem to discriminate between EO-ASD and RO-ASD. Notably, rs1051312 is located in the 3' untranslated region (UTR) of the gene and is the target of microRNA (miRNA) regulation, suggesting a possible epigenetic role in the onset of regressive autism. These SNPs, by discriminating two different onset patterns, may represent diagnostic biomarkers of ASD and may provide insight into the different biological mechanisms towards the development of better tailored therapeutic and rehabilitative approaches.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , MicroRNAs , Criança , Humanos , Regiões 3' não Traduzidas , Alelos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Genótipo
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614334

RESUMO

Approximately 15% of multiple sclerosis (MS) patients develop a progressive form of disease from onset; this condition (primary progressive-PP) MS is difficult to diagnose and treat, and is associated with a poor prognosis. Extracellular vesicles (EVs) of brain origin isolated from blood and their protein cargoes could function as a biomarker of pathological conditions. We verified whether MBP and MOG content in oligodendrocytes-derived EVs (ODEVs) could be biomarkers of MS and could help in the differential diagnosis of clinical MS phenotypes. A total of 136 individuals (7 clinically isolated syndrome (CIS), 18 PPMS, 49 relapsing remitting (RRMS)) and 70 matched healthy controls (HC) were enrolled. ODEVs were enriched from serum by immune-capture with anti-MOG antibody; MBP and MOG protein cargoes were measured by ELISA. MBP concentration in ODEVs was significantly increased in CIS (p < 0.001), RRMS (p < 0.001) and PPMS (p < 0.001) compared to HC and was correlated with disease severity measured by EDSS and MSSS. Notably, MBP concentration in ODEVs was also significantly augmented in PPMS compared to RRMS (p = 0.004) and CIS (p = 0.03). Logistic regression and ROC analyses confirmed these results. A minimally invasive blood test measuring the concentration of MBP in ODEVs is a promising tool that could facilitate MS diagnosis.


Assuntos
Vesículas Extracelulares , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Proteína Básica da Mielina , Humanos , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Oligodendroglia/metabolismo , Projetos Piloto , Prognóstico
7.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686183

RESUMO

Better knowledge about the possible role of genetic factors in modulating the response to multiple sclerosis (MS) treatment, including rehabilitation, known to promote neural plasticity, could improve the standard of care for this disease. Vitamin D receptor (VDR) gene polymorphisms are associated with MS risk, probably because of the role played by vitamin D in regulating inflammatory and reparative processes. The aim of this study was to evaluate the association of the most important functional VDR SNPs (TaqI (T/C), ApaI (A/C), and FokI (C/T)) with functional outcome in MS patients undergoing multidisciplinary inpatient rehabilitation (MDR) treatment, in order to determine whether genetic profiling might be useful to identify subjects with a higher chance of recovery. To this end, 249 MS inpatients with a diagnosis of either progressive (pMS; n = 155) or relapsing remitting (RRMS; n = 94) disease who underwent MDR treatment (average duration = 5.1 weeks) were genotyped for VDR SNPs by real-time allelic discrimination. The rehabilitation outcome was assessed using the modified Barthel Index (mBI), Expanded Disability Status Scale (EDSS), and pain numerical rating scores (NRS) at the beginning and the end of MDR treatment. A positive correlation was observed in RRMS patients between the VDR TaqI major allele (TT) and mBI increase (i.e., better functional recovery), as assessed by the linear and logistic regression analysis adjusted for gender, age, disease duration, time of hospitalization, HLA-DRB1*15.01 positivity, and number of rehabilitative interventions (Beta = 6.35; p = 0.0002). The VDR-1 TaqI, ApaI, FokI: TCC haplotype was also associated with mBI increase in RRMS patients (Beta = 3.24; p = 0.007), whereas the VDR-2: CAC haplotype was correlated with a lower mBI increase (Beta = -2.18 p = 0.04) compared with the other haplotypes. VDR TaqI major allele (TT), as well as the VDR-1 TaqI, ApaI, FokI: TCC haplotype could be associated with a better rehabilitation outcome in RRMS patients.


Assuntos
Esclerose Múltipla , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/genética , Esclerose Múltipla/genética , Pacientes , Polimorfismo de Nucleotídeo Único
8.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240185

RESUMO

REM sleep behavior disorder (RBD) has a tighter link with synucleinopathies than other neurodegenerative disorders. Parkinson's Disease (PD) patients with RBD have a more severe motor and cognitive impairment; biomarkers for RBD are currently unavailable. Synaptic accumulation of α-Syn oligomers and their interaction with SNARE proteins is responsible for synaptic dysfunction in PD. We verified whether oligomeric α-Syn and SNARE components in neural-derived extracellular vesicles (NDEVs) in serum could be biomarkers for RBD. Forty-seven PD patients were enrolled, and the RBD Screening Questionnaire (RBDSQ) was compiled. A cut-off score > 6 to define probable RBD (p-RBD) and probable non-RBD (p non-RBD) was used. NDEVs were isolated from serum by immunocapture, and oligomeric α-Syn and SNARE complex components VAMP-2 and STX-1 were measured by ELISA. NDEVs' STX-1A resulted in being decreased in p-RBD compared to p non-RBD PD patients. A positive correlation between NDEVs' oligomeric α-Syn and RBDSQ total score was found (p = 0.032). Regression analysis confirmed a significant association between NDEVs' oligomeric α-Syn concentration and RBD symptoms (p = 0.033) independent from age, disease duration, and motor impairment severity. Our findings suggest that synuclein-mediated neurodegeneration in PD-RBD is more diffuse. NDEVs' oligomeric α-Syn and SNARE complex components' serum concentrations could be regarded as reliable biomarkers for the RBD-specific PD endophenotype.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/etiologia , Transtorno do Comportamento do Sono REM/metabolismo , Estudos de Coortes , Inquéritos e Questionários , Biomarcadores
9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499708

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to progressive physical disability. Recent evidence has suggested that P2X7 receptor (P2X7R)-mediated purinergic signalling pathways play a role in MS-associated neuroinflammation, possibly contributing to disease pathogenesis. To evaluate possible associations between P2X7R polymorphisms and MS disease severity, we performed an association study of five non-synonymous SNPs coding variants of the P2X7R gene: rs1718119 Ala348Thr, rs2230911 Thr357Ser, rs2230912 Gln460Arg, rs3751143 Glu496Ala, and rs28360457 Arg307Gln, modulating P2X7R expression in 128 MS patients (relapsing remitting MS, RRMS: n = 94; secondary progressive, SPMS: n = 34). All patients were genotyped, and multiple sclerosis severity score (MSSS) was evaluated in every case; 189 healthy subjects were enrolled as well as controls. Results showed that P2X7R rs1718119(A) 348Thr and rs22390912(G) 464Arg, two SNPs of minor allele frequency (MAF) known to confer gain of function to the P2X7R protein, were associated with significantly higher MSSS in RRMS patients alone (SMRR (p < 0.001, p = 0.01, respectively)). Interestingly, two whole haplotypes resulted in having significant association with MSSS in these same patients. Thus: (1) the P2X7R-4 "ACGAG" haplotype, characterized by the co-presence of the rs1718119-rs2230912 AG MAF alleles, was associated with higher MSSS (Beta: 1.11 p = 0.04), and (2) the P2X7R-1 "GCAAG" complementary haplotype, which contains the rs1718119 and rs2230912 GA wild-type alleles, was more frequently carried by patients with lower MSSS and less severe disease (Beta: −1.54 p < 0.001). Although being preliminary and needing confirmation in an ampler cohort, these results suggest that 348Thr and 464Arg variants have a role as modulators of disease severity in RRMS patients.


Assuntos
Esclerose Múltipla , Polimorfismo de Nucleotídeo Único , Humanos , Predisposição Genética para Doença , Esclerose Múltipla/genética , Gravidade do Paciente , Receptores Purinérgicos/genética , Receptores Purinérgicos P2X7/genética
10.
Neurobiol Dis ; 148: 105185, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217562

RESUMO

Blood-based biomarkers are needed to be used as easy, reproducible, and non-invasive tools for the diagnosis and prognosis of chronic neurodegenerative disorders including Parkinson's Disease (PD). In PD, aggregated toxic forms of α-Synuclein (α-Syn) accumulate within neurons in the brain and cause neurodegeneration; α-Syn interaction with SNARE proteins also results in synaptic disfunction. We isolated neural derived extravesicles (NDEs) from peripheral blood of 32 PD patients and 40 healthy controls (HC) and measured the concentrations of oligomeric α-Syn and of the presinaptic SNARE complex proteins: STX-1A, VAMP-2 and SNAP-25. Oligomeric α-Syn was significantly augmented whereas STX-1A and VAMP-2 were significantly reduced in NDEs of PD patients compared to HC (p < 0.001 in all cases). ROC curve analyses confirmed the discriminatory ability of NDEs oligomeric α-Syn, STX-1A and VAMP-2 levels to distinguish between PD patients and HC. Oligomeric α-Syn NDEs concentration also positively correlated with disease duration and severity of PD. These results are promising and confirm that NDEs cargoes likely reflect core pathogenic intracellular processes in their originating brain cells and could serve as novel easily accessible bio-markers. Further studies are needed to confirm results and eventually for testing rehabilitation programs and drug treatments effects.


Assuntos
Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polímeros/metabolismo , Proteínas SNARE/metabolismo
11.
J Transl Med ; 19(1): 315, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289870

RESUMO

BACKGROUND: Sarcopenia is a loss of muscle mass and strength causing disability, morbidity, and mortality in older adults, which is characterized by alterations of the neuromuscular junctions (NMJs). SNAP-25 is essential for the maintenance of NMJ integrity, and the expression of this protein was shown to be modulated by the SNAP-25 rs363050 polymorphism and by a number of miRNAs. METHODS: We analysed these parameters in a cohort of sarcopenic patients undergoing structured rehabilitation. The rs363050 genotype frequency distribution was analyzed in 177 sarcopenic patients and 181 healthy controls (HC). The concentration of seven miRNAs (miR-451a, miR-425-5p, miR155-5p, miR-421-3p, miR-495-3p, miR-744-5p and miR-93-5p), identified by mouse brain miRNome analysis to be differentially expressed in wild type compared to SNAP-25± heterozygous mice, was analyzed as well by droplet digital PCR (ddPCR) in a subgroup of severe sarcopenic patients undergoing rehabilitation. RESULTS: The SNAP-25 rs363050 AA genotype was significantly more common in sarcopenic patients compared to HC (pc = 0.01); miR-451a was significantly up-regulated in these patients before rehabilitation. Rehabilitation modified miRNAs expression, as miR-155-5p, miR-421-3p, miR-451a, miR-425-5p, miR-744-5p and miR-93-5p expression was significantly up-regulated (p < 0.01), whereas that of miR-495-3p was significantly down-regulated (p < 0.001) by rehabilitation. Notably, rehabilitation-associated improvement of the muscle-skeletal SPPB score was significantly associated with the reduction of miR-451a expression. CONCLUSION: These results support the hypothesis of a role for SNAP-25 in sarcopenia and suggest SNAP-25-associated miRNAs as circulatory biomarkers of rehabilitative outcome for sarcopenia.


Assuntos
MicroRNAs , Sarcopenia , Idoso , Animais , Biomarcadores , Perfilação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Músculos , Polimorfismo de Nucleotídeo Único/genética , Sarcopenia/genética , Proteína 25 Associada a Sinaptossoma
12.
Immun Ageing ; 18(1): 15, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785044

RESUMO

The risk of serious complications and the fatality rate due to COVID-19 pandemic have proven particularly higher in older persons, putting a further strain in healthcare system as we dramatically observed.COVID-19 is not exclusively gerophile (géro "old" and philia "love") as young people can be infected, even if older people experience more severe symptoms and mortality due to their greater frailty. Indeed, frailty could complicate the course of COVID-19, much more than the number of years lived. As demonstration, there are centenarians showing remarkable capacity to recover after coronavirus infection.We hypothesize that centenarian's portfolio could help in identifying protective biological mechanisms underlying the coronavirus infection.The human leukocyte antigen (HLA) is one of the major genetic regions associated with human longevity, due to its central role in the development of adaptive immune response and modulation of the individual's response to life threatening diseases. The HLA locus seems to be crucial in influencing susceptibility and severity of COVID-19.In this hypothesis, we assume that the biological process in which HLA are involved may explain some aspects of coronavirus infection in centenarians, although we cannot rule out other biological mechanisms that these extraordinary persons are able to adopt to cope with the infection.

13.
N Engl J Med ; 376(17): 1615-1626, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28445677

RESUMO

BACKGROUND: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).


Assuntos
Fator Ativador de Células B/genética , Mutação INDEL , Lúpus Eritematoso Sistêmico/genética , Esclerose Múltipla/genética , Autoimunidade , Fator Ativador de Células B/metabolismo , Estudos de Casos e Controles , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Itália , Lúpus Eritematoso Sistêmico/imunologia , MicroRNAs , Esclerose Múltipla/imunologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Risco , Análise de Sequência de RNA , Transcrição Gênica
14.
J Transl Med ; 18(1): 325, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859213

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by extracellular plaques, intracellular neurofibrillary tangles and neuronal loss in the central nervous system (CNS). Pathogens are suspected to have a role in the development of AD; herpes simplex virus type 1 (HSV-1), in particular, is suggested to be a risk factor for the disease. The gamma receptor for the Fc portion of IgG molecules (FCGRs) plays a crucial role in regulating immune responses, and among FCGRs, FCGRIIB is endowed with an inhibitory function. Notably, the rs1050501 polymorphism of FCGRIIB gene associates with autoimmune diseases and with neuronal uptake and interneuronal accumulation of amyloid beta in animal AD models. METHODS: Genotype and allelic distribution of ApoE4 and FCGRIIB rs1050501 were evaluated in a case-control population of 225 AD patients, 93 MCI individuals and 201 sex and age matched healthy controls (HC). HSV-1 total IgG titers and IgG subclasses were detected and quantified in a subgroup of the main study population by ELISA. RESULTS: Genotype and allelic distribution of FCGRIIB was comparable in the study population. HSV-1-specific antibody titers were significantly higher in AD and MCI compared to HC (p < 0.01 for both); IgG3 titers, in particular, were increased in MCI compared to AD (p = 0.04). Analyses of possible correlations between the FCGRIIB rs1050501 genotype polymorphism and IgG subclasses showed that the presence of IgG3 was more frequent in MCI carrying the FCGRIIB TT (94.1%) compared to those carrying the CT genotype (63.6%) (p = 0.03). CONCLUSION: Results herein show an association between humoral immune response against HSV-1 and FCGRIIB rs1050501 genetic variation in the first stage of the disease.


Assuntos
Doença de Alzheimer , Herpesvirus Humano 1 , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Anticorpos Antivirais , Humanos , Imunoglobulina G
15.
Mol Biol Rep ; 47(11): 9201-9205, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33085050

RESUMO

Polyomavirus JC (JCPyV) is a ubiquitous human neurotropic virus that can cause progressive multifocal leukoencephalopathy (PML), sometimes as a consequence of drug treatment for disabling diseases, including Multiple Sclerosis. JCPyV expresses microRNAs (miRNAs), and in particular miR-J1-5p, but at now we have limited knowledge regarding this aspect. In the present study the expression of JCPyV miR-J1-5p was measured in infected COS-7, to verify if and when this miRNA is expressed in a cell model of JCPyV-MAD-4 strain infection. Results showed that miR-J1-5p expression was relatively constant inside the cells from 11 days to 35 days after infection (mean: 4.13 × 105 copies/µg), and became measurable in supernatants 18 days after infection (mean: 7.20 × 104 copies/µl). miR-J1-5p expression in supernatants peaked (3.76 × 105 copies/µl) 25 days after infection and started to decrease 32 days after infection (7.20 × 104 copies/µl). These data show that COS-7 cells, already used as model for JCPyV replication cycle, can be also utilized to study JCPyV miRNAs expression, potentially opening new research avenues for diseases in which current therapeutic approaches could result in severe adverse effects (e.g. Natalizumab-associated JCPyV reactivation in Multiple Sclerosis patients). In these situations monitoring of miR-J1-5p may shed light on the mechanisms of virus reactivation and may help the clarification of the mechanisms responsible for such severe side effects.


Assuntos
Regulação Viral da Expressão Gênica , Vírus JC/genética , MicroRNAs/genética , Modelos Biológicos , RNA Viral/genética , Animais , Células COS , Chlorocebus aethiops , DNA Viral/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus JC/fisiologia , Leucoencefalopatia Multifocal Progressiva/virologia , Fatores de Tempo , Carga Viral/genética , Replicação Viral/genética
16.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260845

RESUMO

Aging is characterized by increase in reactive oxygen (ROS) and nitrogen (RNS) species, key factors of cardiac failure and disuse-induced muscle atrophy. This study focused on serum nitroproteome as a trait of longevity by adopting two complementary gel-based techniques: two-dimensional differential in gel electrophoresis (2-D DIGE) and Nitro-DIGE coupled with mass spectrometry of albumin-depleted serum of aged (A, n = 15) and centenarian (C, n = 15) versus young females (Y, n = 15). Results indicate spots differently expressed in A and C compared to Y and spots changed in A vs. C. Nitro-DIGE revealed nitrosated protein spots in A and C compared to Y and spots changed in A vs. C only (p-value < 0.01). Nitro-proteoforms of alpha-1-antitripsin (SERPINA1), alpha-1-antichimotripsin (SERPINA3), ceruloplasmin (CP), 13 proteoforms of haptoglobin (HP), and inactive glycosyltransferase 25 family member 3 (CERCAM) increased in A vs. Y and C. Conversely, nitrosation levels decreased in C vs. Y and A, for immunoglobulin light chain 1 (IGLC1), serotransferrin (TF), transthyretin (TTR), and vitamin D-binding protein (VDBP). Immunoblottings of alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR) and thioredoxin reductase 1 (TRXR1) indicated lower levels of ADH5 in A vs. Y and C, whereas TRXR1 decreased in A and C in comparison to Y. In conclusion, the study identified putative markers in C of healthy aging and high levels of ADH5/GSNOR that can sustain the denitrosylase activity, promoting longevity.


Assuntos
Longevidade/fisiologia , Proteoma/metabolismo , Soro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroforese em Gel Bidimensional , Feminino , Humanos , Pessoa de Meia-Idade , Músculos/fisiologia , Nitrosação , Estresse Nitrosativo , Proteômica , Tirosina/metabolismo
17.
Cell Mol Neurobiol ; 39(8): 1217-1221, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31297637

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive performance; Mild Cognitive Impairment (MCI) is instead an objective decline in cognitive performance that does not reach pathology. Paired immunoglobulin-like type 2 receptor alpha (PILRA) is a cell surface inhibitory receptor that was recently suggested to be involved in AD pathogenesis. In particular, the arginine-to-glycine substitution in position 78 (R78, rs1859788) was shown to be protective against AD. Herpes simplex virus type 1 (HSV-1) infection is suspected as well to be involved in AD. Interestingly, HSV-1 uses PILRA to infect cells, and HSV-1 infects more efficiently PIRLA G78 compared to R78 macrophages. We analyzed PILRA rs1859788 polymorphism and HSV-1 humoral immune responses in AD (n = 61) and MCI patients (n = 48), and in sex and age matched healthy controls (HC; n = 57). The rs1859788 PILRA genotype distribution was similar among AD, MCI and HC; HSV-1 antibody (Ab) titers were increased in AD and MCI compared to HC (p < 0.05 for both comparisons). Notably, HSV-1-specific IgG1 were significantly increased in AD patients carrying PILRA R78 rs1859788 AA than in those carrying G78 AG or GG (p = 0.01 for both comparisons), and the lowest titers of HSV-1-specific IgG1 were observed in rs1859788 GG AD. HSV-1 IgG are increased in AD patients with the protective R78 PILRA genotype. Because in AD patients brain atrophy is inversely correlated with HSV-1-specific IgG titers, results herein suggest a possible link between two important genetic and infective factors suspected to be involved in AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Herpesvirus Humano 1/imunologia , Imunoglobulina G/imunologia , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/virologia , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Masculino
18.
Brain Behav Immun ; 79: 314-318, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763769

RESUMO

Recent results show that in mainland Italian children with Autism spectrum disorder (ASD), HLA-G coding alleles distribution is skewed and an association between HLA-G*01:05N and ASD is present. Herein, in an independent cohort of Sardinian ASD (sASD) children and their relatives, we verify whether HLA-G allele association with ASD could be confirmed in this genetically peculiar insular population. One hundred children with a diagnosis of ASD, born in Sardinia and of Sardinian descent, 91 of their mothers, and 40 of their healthy siblings were enrolled. DNA sequencing analysis of HLA-G exon 2, 3 and 4 was used to obtain HLA-G allelic frequencies. Alleles distribution was compared with that of continental ASD children and with a control group of Caucasoid couples of multiparous women and their partners from Brazil and Denmark. Skewing of HLA-G allele distribution was replicated in sASD children; in particular, the HLA-G*01:03 allele, associated with reduced fetal tolerogenicity and development of myeloid leukemia, was more common in both ASD groups compared to controls (pc = 1 × 10-3; OR:3.5, 95%CI: 1.8-6.8). However, given the lack of data on HLA-G*01:03 allelic distribution among Sardinian healthy subjects, we cannot exclude a population effect. These data confirm an association of HLA-G locus with ASD development, particularly with those alleles linked to a lower expression of tolerogenic HLA-G protein, thus warranting further studies on HLA-G polymorphism distribution in different ASD populations.


Assuntos
Transtorno do Espectro Autista/genética , Antígenos HLA-G/genética , Adulto , Alelos , Transtorno do Espectro Autista/imunologia , Criança , Estudos de Coortes , Etnicidade/genética , Éxons/genética , Feminino , Frequência do Gene/genética , Genes MHC Classe I/genética , Predisposição Genética para Doença , Genótipo , Antígenos HLA-G/imunologia , Haplótipos , Humanos , Itália , Masculino , Polimorfismo Genético/genética
19.
J Transl Med ; 16(1): 80, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587799

RESUMO

BACKGROUND: The etiopathology of multiple sclerosis (MS) is believed to include genetic and environmental factors. Human leukocyte antigen (HLA) alleles, in particular,  are associated with disease susceptibility, whereas Epstein Barr Virus (EBV) infection has long been suspected to play a role in disease pathogenesis. The aim of the present study is to evaluate correlations between HLA alleles and EBV infection in MS. METHODS: HLA alleles, EBV viral load (VL) and serum anti-EBV antibody titers were evaluated in EBV-seropositive MS patients (N = 117) and age- and sex-matched healthy controls (HC; N = 89). RESULTS: Significantly higher DNA viral loads (p = 0.048) and EBNA-1 antibody titer (p = 0.0004) were seen in MS compared to HC. EBV VL was higher in HLA-B*07+ (p = 0.02) and HLA-DRB1*15+ (p = 0.02) MS patients, whereas it was lower in HLA-A*02+ (p = 0.04) subjects. EBV VL was highest in HLA-A*02-/B*07+/DRB1*15+ patients and lowest in HLA-A*A02+/B*07-/DRB1*15- individuals (p < 0.0001). HLA-B*07 resulted the most associated allele to EBV VL after multiple regression analysis considering altogether the three alleles, (p = 0.0001). No differences were observed in anti-EBV antibody titers in relationship with HLA distribution. CONCLUSIONS: Host HLA-B*07 allele influence EBV VL in MS. As HLA-class I molecules present antigens to T lymphocytes and initiate immune response against viruses, these results could support a role for EBV in MS.


Assuntos
Alelos , Antígenos HLA/genética , Herpesvirus Humano 4/fisiologia , Esclerose Múltipla/genética , Esclerose Múltipla/virologia , Carga Viral , Adulto , Estudos de Casos e Controles , Citomegalovirus/fisiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Estudos Soroepidemiológicos
20.
Brain Behav Immun ; 67: 308-313, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28923404

RESUMO

Different isoforms of HLA-G protein are endowed with a differential ability to induce allogenic tolerance during pregnancy. As prenatal immune activation is suggested to play a role in the onset of autistic spectrum disorders (ASD), we evaluated HLA G*01:01-*01:06 allelic polymorphism in a cohort of Italian children affected by ASD (N=111) their mothers (N=81), and their healthy siblings (N=39). DNA sequencing analysis of HLA-G exon 2, 3 and 4 was used to obtain HLA-G allelic frequencies; alleles distribution was compared with that of two control groups of Caucasoid couples of multiparous women and their partners from Brazil and Denmark. HLA-G distribution was significantly different in ASD children compared to both control groups (Brazilian pc=1×10-4; Danish pc=1×10-3). Since HLA-G distribution was similar in the two control groups, their data were pooled. Results indicated that HLA-G*01:01 was significantly less frequent (pc=1×10-4; OR:0.5, 95%CI: 0.3-0.7) whereas HLA-G*01:05N was significantly more frequent (pc=2×10-3; OR:7.3, 95%CI: 2.4-26.6) in ASD children compared to combined controls. Finally, no clear pattern emerged when HLA-G allelic distribution was analyzed in healthy sibs. Notably, HLA-G allelic distribution found in ASD mothers was similar to that observed in the control subgroup of women with recurrent miscarriages, whilst it was significantly different compared to women without miscarriages (pc=6×10-4 df=12). Since HLA-G*01:01 is associated with the elicitation of KIR-mediated tolerogenic responses and HLA-G*01:05N correlates with NK cells activation, results herein indicate that an immune activating milieu during pregnancy is more likely observed in association with the development of ASD, similarly to what occurs in women with recurrent miscarriages.


Assuntos
Transtorno do Espectro Autista/genética , Antígenos HLA-G/genética , Criança , Feminino , Frequência do Gene , Humanos , Masculino , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA