Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(9): 2679-2690, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421768

RESUMO

Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal-fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.


Assuntos
Evolução Biológica , Ciprinodontiformes/metabolismo , Placentação , Viviparidade não Mamífera , Animais , Ciprinodontiformes/anatomia & histologia , Feminino , Gravidez , Proteínas da Gravidez/metabolismo , Prolactina/metabolismo , Via Secretória/genética , Transcriptoma
2.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960923

RESUMO

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Assuntos
Ciprinodontiformes/genética , Genoma , Características de História de Vida , Seleção Genética , Viviparidade não Mamífera/genética , Animais , Feminino , Duplicação Gênica , Masculino , Placenta , Gravidez
3.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895534

RESUMO

Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.


Assuntos
Eutérios/genética , Lactação/genética , Placentação/genética , Animais , Evolução Biológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite , Placenta/metabolismo , Gravidez
4.
Elife ; 5: e12115, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26977633

RESUMO

Birds display remarkable diversity in the distribution and morphology of scales and feathers on their feet, yet the genetic and developmental mechanisms governing this diversity remain unknown. Domestic pigeons have striking variation in foot feathering within a single species, providing a tractable model to investigate the molecular basis of skin appendage differences. We found that feathered feet in pigeons result from a partial transformation from hindlimb to forelimb identity mediated by cis-regulatory changes in the genes encoding the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also found that ectopic expression of Tbx5 is associated with foot feathers in chickens, suggesting similar molecular pathways underlie phenotypic convergence between these two species. These results show how changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide viable molecular mechanisms for diversity in hindlimb scale and feather distribution.


Assuntos
Galinhas/anatomia & histologia , Columbidae/anatomia & histologia , Plumas , Membro Anterior/anatomia & histologia , Regulação da Expressão Gênica , Membro Posterior/anatomia & histologia , Animais , Galinhas/genética , Columbidae/genética , Fatores de Transcrição/genética
5.
Curr Biol ; 24(4): 459-64, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24508169

RESUMO

Understanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies, but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution.


Assuntos
Proteínas Aviárias/genética , Columbidae/genética , Epistasia Genética , Mutação , Pigmentação , Animais , Antígenos de Neoplasias/genética , Cor , Columbidae/fisiologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Oxirredutases/genética , Fenótipo , Fatores de Transcrição SOXE/genética
6.
PLoS One ; 8(8): e74475, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977400

RESUMO

Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon (Columbalivia) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species.


Assuntos
Substituição de Aminoácidos , Membrana Celular/metabolismo , Columbidae/genética , Melaninas/genética , Mutação/genética , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Plumas/fisiologia , Haplótipos/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Receptor Tipo 1 de Melanocortina/química , Alinhamento de Sequência
7.
Curr Biol ; 22(4): 302-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22264611

RESUMO

Domestic pigeons are spectacularly diverse and exhibit variation in more traits than any other bird species [1]. In The Origin of Species, Charles Darwin repeatedly calls attention to the striking variation among domestic pigeon breeds-generated by thousands of years of artificial selection on a single species by human breeders-as a model for the process of natural divergence among wild populations and species [2]. Darwin proposed a morphology-based classification of domestic pigeon breeds [3], but the relationships among major groups of breeds and their geographic origins remain poorly understood [4, 5]. We used a large, geographically diverse sample of 361 individuals from 70 domestic pigeon breeds and two free-living populations to determine genetic relationships within this species. We found unexpected relationships among phenotypically divergent breeds as well as convergent evolution of derived traits among several breed groups. Our findings also illuminate the geographic origins of breed groups in India and the Middle East and suggest that racing breeds have made substantial contributions to feral pigeon populations.


Assuntos
Columbidae/genética , Variação Genética , Repetições de Microssatélites , Filogeografia , Animais , Evolução Biológica , Cruzamento , Columbidae/anatomia & histologia , Columbidae/classificação , Especiação Genética , Dados de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA