Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 20(2): 602-611, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124858

RESUMO

Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production throughout the water column, however, more prominently in the bathypelagic waters. Microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) allowed us to identify several microbial groups involved in dark DIC uptake. The contribution of SAR406 (Marinimicrobia), SAR324 (Deltaproteobacteria) and Alteromonas (Gammaproteobacteria) to the dark DIC fixation was significantly higher than that of SAR202 (Chloroflexi) and Thaumarchaeota, in agreement with their contribution to microbial abundance. Q-PCR on the gene encoding for the ammonia monooxygenase subunit A (amoA) from the putatively high versus low ammonia concentration ecotypes revealed their depth-stratified distribution pattern. Taken together, our results indicate that chemoautotrophy is widespread among microbes in the dark ocean, particularly in bathypelagic waters. This chemolithoautotrophic biomass production in the dark ocean, depleted in bio-available organic matter, might play a substantial role in sustaining the dark ocean's food web.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Água do Mar/microbiologia , Amônia/metabolismo , Archaea/metabolismo , Oceano Atlântico , Crescimento Quimioautotrófico , Chloroflexi/metabolismo , Deltaproteobacteria/metabolismo , Europa (Continente) , Gammaproteobacteria/metabolismo , Hibridização in Situ Fluorescente , Oxirredutases/genética
2.
Sci Rep ; 11(1): 24370, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934099

RESUMO

Microbial heterotrophic activity is a major process regulating the flux of dissolved organic matter (DOM) in the ocean, while the characteristics of this DOM strongly influence its microbial utilization and fate in the ocean. In order to broaden the vertical resolution of leucine-to-carbon conversion factors (CFs), needed for converting substrate incorporation into biomass production by heterotrophic bacteria, 20 dilution experiments were performed in the North Atlantic Ocean. We found a depth-stratification in empirical CFs values from epipelagic to bathypelagic waters (4.00 ± 1.09 to 0.10 ± 0.00 kg C mol Leu-1). Our results demonstrated that the customarily used theoretical CF of 1.55 kg C mol Leu-1 in oceanic samples can lead to an underestimation of prokaryotic heterotrophic production in epi- and mesopelagic waters, while it can overestimate it in the bathypelagic ocean. Pearson correlations showed that CFs were related not only to hydrographic variables such as temperature, but also to specific phylogenetic groups and DOM quality and quantity indices. Furthermore, a multiple linear regression model predicting CFs from relatively simple hydrographic and optical spectroscopic measurements was attempted. Taken together, our results suggest that differences in CFs throughout the water column are significantly connected to DOM, and also reflect differences linked to specific prokaryotic groups.

3.
Front Microbiol ; 11: 586148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329457

RESUMO

To study the response of bacteria to different size-fractions of naturally occurring dissolved organic matter (DOM), a natural prokaryotic community from North Atlantic mesopelagic waters (1000 m depth) was isolated and grown in (i) 0.1-µm filtered seawater (CONTROL), (ii) the low-molecular-weight (<1 kDa) DOM fraction (L-DOM), and (iii) the recombination of high- (>1 kDa) and low-molecular-weight DOM fractions (H + L-DOM), to test the potential effect of ultrafiltration on breaking the DOM size continuum. Prokaryotic abundance and leucine incorporation were consistently higher in the H + L-DOM niche than in the L-DOM and CONTROL treatments, suggesting a different interaction with each DOM fraction and the disruption of the structural DOM continuum by ultrafiltration, respectively. Rhodobacterales (Alphaproteobacteria) and Flavobacteriales (Bacteroidetes) were particularly enriched in L-DOM and closely related to the colored DOM (CDOM) fraction, indicating the tight link between these groups and changes in DOM aromaticity. Conversely, some other taxa that were rare or undetectable in the original bacterial community were enriched in the H + L-DOM treatment (e.g., Alteromonadales belonging to Gammaproteobacteria), highlighting the role of the rare biosphere as a seed bank of diversity against ecosystem disturbance. The relationship between the fluorescence of protein-like CDOM and community composition of populations in the H + L-DOM treatment suggested their preference for labile DOM. Conversely, the communities growing on the L-DOM niche were coupled to humic-like CDOM, which may indicate their ability to degrade more reworked DOM and/or the generation of refractory substrates (as by-products of the respiration processes). Most importantly, L- and/or H + L-DOM treatments stimulated the growth of unique bacterial amplicon sequence variants (ASVs), suggesting the potential of environmental selection (i.e., changes in DOM composition and availability), particularly in the light of climate change scenarios. Taken together, our results suggest that different size-fractions of DOM induced niche-specialization and differentiation of mesopelagic bacterial communities.

4.
FEMS Microbiol Ecol ; 93(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789536

RESUMO

Prokaryotic abundance, activity and community composition were studied in the euphotic, intermediate and deep waters off the Galician coast (NW Iberian margin) in relation to the optical characterization of dissolved organic matter (DOM). Microbial (archaeal and bacterial) community structure was vertically stratified. Among the Archaea, Euryarchaeota, especially Thermoplasmata, was dominant in the intermediate waters and decreased with depth, whereas marine Thaumarchaeota, especially Marine Group I, was the most abundant archaeal phylum in the deeper layers. The bacterial community was dominated by Proteobacteria through the whole water column. However, Cyanobacteria and Bacteroidetes occurrence was considerable in the upper layer and SAR202 was dominant in deep waters. Microbial composition and abundance were not shaped by the quantity of dissolved organic carbon, but instead they revealed a strong connection with the DOM quality. Archaeal communities were mainly related to the fluorescence of DOM (which indicates respiration of labile DOM and generation of refractory subproducts), while bacterial communities were mainly linked to the aromaticity/age of the DOM produced along the water column. Taken together, our results indicate that the microbial community composition is associated with the DOM composition of the water masses, suggesting that distinct microbial taxa have the potential to use and/or produce specific DOM compounds.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Compostos Orgânicos/química , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Oceano Atlântico , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA