Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Synapse ; 78(4): e22301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38819491

RESUMO

Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.


Assuntos
Doenças do Sistema Nervoso , Fenilbutiratos , Humanos , Fenilbutiratos/uso terapêutico , Fenilbutiratos/farmacologia , Animais , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo
2.
Synapse ; 77(4): e22271, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130656

RESUMO

The cognitive functions of people over 60 years of age have been diminished, due to the structural and functional changes that the brain has during aging. The most evident changes are at the behavioral and cognitive level, with decreased learning capacity, recognition memory, and motor incoordination. The use of exogenous antioxidants has been implemented as a potential pharmacological option to delay the onset of brain aging by attenuating oxidative stress and neurodegeneration. Resveratrol (RSVL) is a polyphenol present in various foods, such as red fruits, and drinks, such as red wine. This compound has shown great antioxidant capacity due to its chemical structure. In this study, we evaluated the effect of chronic RSVL treatment on oxidative stress and cell loss in the prefrontal cortex, hippocampus, and cerebellum of 20-month-old rats, as well as its impact on recognition memory and motor behavior. Rats treated with RSVL showed an improvement in locomotor activity and in short- and long-term recognition memory. Likewise, the concentration of reactive oxygen species and lipid peroxidation decreased significantly in the group with RSVL, coupled with an improvement in the activity of the antioxidant system. Finally, with the help of hematoxylin and eosin staining, it was shown that chronic treatment with RSVL prevented cell loss in the brain regions studied. Our results demonstrate the antioxidant and neuroprotective capacity of RSVL when administered chronically. This strengthens the proposal that RSVL could be an important pharmacological option to reduce the incidence of neurodegenerative diseases that affect older adults.


Assuntos
Antioxidantes , Estresse Oxidativo , Ratos , Animais , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Reconhecimento Psicológico , Hipocampo/metabolismo
3.
Synapse ; 76(9-10): 1-16, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709361

RESUMO

Cadmium (Cd) is a heavy metal classified as a carcinogen whose exposure could affect the function of the central nervous system. Studies suggest that Cd modifies neuronal morphology in the hippocampus and affects cognitive tasks. The oxidative stress pathway is proposed as a mechanism of toxicity. However, this mechanism is not precise yet. This study aimed to evaluate the effect of Cd administration on oxidative stress markers in the male rat's hippocampus. Male Wistar rats were divided into (1) control (drinking water) and (2) treatment with Cd (32.5 ppm of cadmium chloride (CdCl2 ) in water). The Cd was administered for 2, 3, and 4 months. The results show that the oral administration of CdCl2 increased the concentration of Cd in plasma and hippocampus, and this response is time-dependent on its administration. Likewise, it caused an increase in lipid peroxidation and nitrosative stress markers. Moreover, it increased reactive astrogliosis and antioxidant enzyme activity. Consequently, the progression of the oxidative response exacerbated neurodegeneration in hippocampal cells. Our results suggest that Cd exposure induces a severe oxidative response that contributes critically to hippocampal neurodegeneration. It is suggested that exposure to Cd increases the risk of developing neurological diseases, which contributes to a decrease in the quality of life of the human and the environment in which it lives.


Assuntos
Antioxidantes , Cádmio , Animais , Antioxidantes/farmacologia , Cádmio/metabolismo , Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Cloreto de Cádmio/toxicidade , Hipocampo/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Qualidade de Vida , Ratos , Ratos Wistar
4.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235219

RESUMO

Abietic acid (AA), dehydroabietic acid (DHA) and triptoquinones (TQs) are bioactive abietane-type diterpenoids, which are present in many edible vegetables and medicinal herbs with health-promoting properties. Evidence suggests that beneficial effects of diterpenes operate, at least in part, through effects on cells in the immune system. Dendritic cells (DCs) are a key type of leukocyte involved in the initiation and regulation of the immune/inflammatory response and natural or synthetic compounds that modulate DC functions could be potential anti-inflammatory/immunomodulatory agents. Herein, we report the screening of 23 known semisynthetic AA and DHA derivatives, and TQs, synthesized previously by us, in a multi-analyte DC-based assay that detects inhibition of pro-inflammatory cytokine production. Based on the magnitude of the inhibitory effect observed and the number of cytokines inhibited, a variety of activities among compounds were observed, ranging from inactive/weak to very potent inhibitors. Structurally, either alcohol or methyl ester substituents on ring A along with the introduction of aromaticity and oxidation in ring C in the abietane skeleton were found in compounds with higher inhibitory properties. Two DHA derivatives and two TQs exhibited a significant inhibition in all pro-inflammatory cytokines tested and were further investigated. The results confirmed their ability to inhibit, dose dependently, LPS-stimulated expression of the co-stimulatory molecules CD40 and/or CD86 and the production of the pro-inflammatory cytokines IL-1ß, IL-6, IL-12 and TNFα. Our results demonstrate that DC maturation process can be targeted by semisynthetic DHA derivatives and TQ epimers and indicate the potential of these compounds as optimizable anti-inflammatory/immunomodulatory agents.


Assuntos
Abietanos , Fator de Necrose Tumoral alfa , Abietanos/metabolismo , Abietanos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Células Dendríticas , Ésteres/farmacologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Synapse ; 75(6): e22193, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33141999

RESUMO

In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.


Assuntos
Neurônios , Toxina Tetânica , Animais , Dendritos/metabolismo , Hipocampo/metabolismo , Sistema Límbico/metabolismo , Camundongos , Atividade Motora , Neurônios/metabolismo , Toxina Tetânica/metabolismo , Toxina Tetânica/farmacologia , Toxina Tetânica/uso terapêutico
6.
Neurochem Res ; 46(5): 1151-1165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559829

RESUMO

The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.


Assuntos
Memória/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Metformina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Vanadatos/uso terapêutico , Animais , Catalase/metabolismo , Combinação de Medicamentos , Hipocampo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos
7.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833991

RESUMO

Due to the scarcity of therapeutic approaches for COVID-19, we investigated the antiviral and anti-inflammatory properties of curcumin against SARS-CoV-2 using in vitro models. The cytotoxicity of curcumin was evaluated using MTT assay in Vero E6 cells. The antiviral activity of this compound against SARS-CoV-2 was evaluated using four treatment strategies (i. pre-post infection treatment, ii. co-treatment, iii. pre-infection, and iv. post-infection). The D614G strain and Delta variant of SARS-CoV-2 were used, and the viral titer was quantified by plaque assay. The anti-inflammatory effect was evaluated in peripheral blood mononuclear cells (PBMCs) using qPCR and ELISA. By pre-post infection treatment, Curcumin (10 µg/mL) exhibited antiviral effect of 99% and 99.8% against DG614 strain and Delta variant, respectively. Curcumin also inhibited D614G strain by pre-infection and post-infection treatment. In addition, curcumin showed a virucidal effect against D614G strain and Delta variant. Finally, the pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) released by PBMCs triggered by SARS-CoV-2 were decreased after treatment with curcumin. Our results suggest that curcumin affects the SARS-CoV-2 replicative cycle and exhibits virucidal effect with a variant/strain independent antiviral effect and immune-modulatory properties. This is the first study that showed a combined (antiviral/anti-inflammatory) effect of curcumin during SARS-CoV-2 infection. However, additional studies are required to define its use as a treatment for the COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Curcumina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , COVID-19/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Citocinas/genética , Citocinas/metabolismo , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Células Vero
8.
Synapse ; 75(2): e22186, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780904

RESUMO

Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.


Assuntos
Ácido Gálico/farmacologia , Hipocampo/efeitos dos fármacos , Síndrome Metabólica/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Catalase/efeitos dos fármacos , Catalase/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/metabolismo , Insulina/sangue , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
9.
Synapse ; 74(9): e22153, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32190918

RESUMO

Metabolic syndrome (MS) is a health problem that is characterized by body fat accumulation, hypertension, dyslipidemia, and hyperglycemia; recently, it has been demonstrated that MS also damages memory processes. The first-line drug in the treatment of MS and type 2 diabetes mellitus is metformin, which is an antihyperglycemic agent. This drug has been shown to produce neuroprotection and to improve memory processes. However, the mechanism involved in this neuroprotection is unknown. A 90-day administration of metformin improved the cognitive processes of rats with MS as evaluated by the novel object recognition test, and this finding could be explained by an increase in the neuronal spine density and spine length. We also found that metformin increased the immunoreactivity of synaptophysin, sirtuin-1, AMP-activated protein kinase, and brain-derived neuronal factor, which are important plasticity markers. We conclude that metformin is an important therapeutic agent that increases neural plasticity and protects cognitive processes. The use of this drug is important in the minimization of the damage caused by MS.


Assuntos
Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Síndrome Metabólica/fisiopatologia , Metformina/farmacologia , Plasticidade Neuronal , Fármacos Neuroprotetores/farmacologia , Reconhecimento Psicológico , Quinases Proteína-Quinases Ativadas por AMP , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Metformina/administração & dosagem , Metformina/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Sinaptofisina/metabolismo
10.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218297

RESUMO

Plant extracts from Cecropia genus have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous reports have shown that roots of Cecropia telenitida that contains serjanic acid as one of the most prominent and representative pentacyclic triterpenes. The study aimed to isolate serjanic acid and evaluate its effect in a prediabetic murine model by oral administration. A semi-pilot scale extraction was established and serjanic acid purification was followed using direct MALDI-TOF analysis. A diet induced obesity mouse model was used to determine the impact of serjanic acid over selected immunometabolic markers. Mice treated with serjanic acid showed decreased levels of cholesterol and triacylglycerols, increased blood insulin levels, decreased fasting blood glucose and improved glucose tolerance, and insulin sensitivity. At transcriptional level, the reduction of inflammation markers related to adipocyte differentiation is reported.


Assuntos
Biomarcadores/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Triterpenos/uso terapêutico , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Obesidade/sangue , Obesidade/tratamento farmacológico , Tamanho do Órgão/efeitos dos fármacos , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
11.
Neurochem Res ; 44(2): 485-497, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673958

RESUMO

Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Cádmio/administração & dosagem , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Ratos Wistar
12.
Synapse ; 71(10): e21987, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28545157

RESUMO

The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17ß-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.

13.
Synapse ; 71(10): e21990, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28650104

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aß-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.

14.
Gastroenterol Hepatol ; 39(6): 369-76, 2016.
Artigo em Espanhol | MEDLINE | ID: mdl-27005800

RESUMO

INTRODUCTION: Randomized controlled trials provide the best scientific evidence for the efficacy of biological drugs in inflammatory bowel disease (IBD). However, findings obtained from these trials might not be reproducible in clinical practice. This study aimed to estimate the percentage of patients with IBD treated with biologics who would have been eligible for randomized controlled trials, and to compare the theoretical efficacy of biological drugs with their effectiveness in clinical practice. METHODS: We performed a retrospective multicenter study in 375 patients with IBD treated with anti-TNF agents and followed-up for 1 year. The eligibility criteria for the trial were taken from the ACCENT, SONIC, ACT, CLASSIC and CHARM trials. Eligible patients were included in a second analysis to compare results in clinical practice versus those hypothetically obtained if the patient had been included in a trial. RESULTS: Only 45.6% of 375 patients would have been eligible for pivotal trials. One-year clinical benefit (remission or response) was similar for eligible and non-eligible cohorts (68.4% vs. 68.6%, P=.608). The clinical benefit was greater for current clinical practice than for a hypothetical trial situation (68.4% vs. 44.4%, P<.001) in eligible patients. CONCLUSION: More than half of patients with IBD treated with biologic drugs would not be represented in pivotal trials. The effectiveness of anti-TNF drugs in clinical practice exceeds their theoretical efficacy.


Assuntos
Adalimumab/uso terapêutico , Fatores Biológicos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/uso terapêutico , Adulto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Estudos de Amostragem , Resultado do Tratamento , Adulto Jovem
15.
Synapse ; 69(6): 314-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25764350

RESUMO

Neonatal prefrontal cortex (nPFC) lesions in rats could be a potential animal model to study the early neurodevelopmental abnormalities associated with the behavioral and morphological brain changes observed in schizophrenia. Morphological alterations in pyramidal neurons from the ventral hippocampus (VH) have been observed in post-mortem schizophrenic brains, mainly because of decreased dendritic arbor and spine density. We assessed the effects of nPFC-lesions on the dendritic morphology of neurons from the VH, basolateral-amygdala (BLA) and the nucleus accumbens (NAcc) in rats. nPFC lesions were made on postnatal day 7 (PD7), after dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at PD35 (prepubertal) and PD60 (adult) ages. We also evaluated the effects of PFC-lesions on locomotor activity caused by a novel environment. Adult animals with nPFC lesions showed a decreased spine density in pyramidal neurons from the VH and in medium spiny cells from the NAcc. An increased locomotion was observed in a novel environment for adult animals with a PFC-lesion. Our results indicate that PFC-lesions alter the neuronal dendrite morphology of the NAcc and the VH, suggesting a disconnection between these limbic structures. The locomotion paradigms suggest that dopaminergic transmission is altered in the PFC lesion model. This could help to understand the consequences of an earlier PFC dysfunction in schizophrenia. To evaluate possible dendritic changes in neonatal prefrontal cortex lesions in schizophrenia-related regions including nucleus accumbens, ventral hippocampus and basolateral amygdala, we used the Golgi-Cox stain samples at PD35 and PD70. Our results suggest that neonatal prefrontal cortex damage alters dendritic parameters in limbic regions, and this has potential implications for schizophrenia.


Assuntos
Tonsila do Cerebelo/patologia , Dendritos/patologia , Hipocampo/patologia , Núcleo Accumbens/patologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Animais Recém-Nascidos , Dendritos/fisiologia , Hipocampo/fisiopatologia , Locomoção/fisiologia , Modelos Animais , Neurônios/patologia , Neurônios/fisiologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Ratos Sprague-Dawley
16.
Synapse ; 69(9): 421-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26073877

RESUMO

A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-ß as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.


Assuntos
Dieta/efeitos adversos , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Doenças Metabólicas/metabolismo , Estresse Oxidativo/fisiologia , Lobo Temporal/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroimunomodulação/fisiologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Lobo Temporal/patologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Synapse ; 68(12): 585-594, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25049192

RESUMO

Alzheimer's disease (AD) is a neurodegenerative process exacerbated by several risk factors including impaired glucose metabolism in the brain that could cause molecular and neurochemical alterations in cognitive regions such as the hippocampus (Hp). Consequently, this process could cause neuronal morphological changes; however, the mechanism remains elusive. We induced chronic hyperglycemia after streptozotocin (STZ) administration. Then, we examined spatial learning and memory using the Morris water maze test and evaluated neuronal morphological changes using the Golgi-Cox stain procedure in hyperglycemic rats that received a Aß25-35 unilateral injection into the Hp. Our results demonstrate that STZ combined with Aß25-35 induced significant deficits in the spatial memory. In addition, we observed a significant reduction in the number of dendritic spines of pyramidal neurons in the dorsal Hp of rats with STZ plus Aß25-35 . In conclusion, the reduced spine density of pyramidal neurons in the CA1 dorsal Hp could produce the spatial memory deficit observed in these animals. These results suggest that hyperglycemia can trigger Aß-induced neurodegeneration and thus the appearance of AD symptoms would be accelerated. Synapse 68:585-594, 2014. © 2014 Wiley Periodicals, Inc.

18.
Sci Rep ; 14(1): 3396, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336873

RESUMO

The stochastic synthesis of extreme, rare climate scenarios is vital for risk and resilience models aware of climate change, directly impacting society in different sectors. However, creating high-quality variations of under-represented samples remains a challenge for several generative models. This paper investigates quantizing reconstruction losses for helping variational autoencoders (VAE) better synthesize extreme weather fields from conventional historical training sets. Building on the classical VAE formulation using reconstruction and latent space regularization losses, we propose various histogram-based penalties to the reconstruction loss that explicitly reinforces the model to synthesize under-represented values better. We evaluate our work using precipitation weather fields, where models usually strive to synthesize well extreme precipitation samples. We demonstrate that bringing histogram awareness to the reconstruction loss improves standard VAE performance substantially, especially for extreme weather events.

19.
J Inflamm (Lond) ; 21(1): 15, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698414

RESUMO

INTRODUCTION: PM exposure can induce inflammatory and oxidative responses; however, differences in these adverse effects have been reported depending on the chemical composition and size. Moreover, inflammatory mechanisms such as NLRP3 activation by PM10 have yet to be explored. OBJECTIVE: To assess the impact of PM10 on cell cytotoxicity and the inflammatory response through in vitro and in vivo models. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) from healthy donors were exposed to PM10. Cytotoxicity was determined using the LDH assay; the expression of inflammasome components and the production of pro-inflammatory cytokines were quantified through qPCR and ELISA, respectively; and the formation of ASC complexes was examined using confocal microscopy. For in vivo analysis, male C57BL6 mice were intranasally challenged with PM10 and bronchoalveolar lavage fluid was collected to determine cell counts and quantification of pro-inflammatory cytokines by ELISA. RNA was extracted from lung tissue, and the gene expression of inflammatory mediators was quantified. RESULTS: PM10 exposure induced significant cytotoxicity at concentrations over 100 µg/mL. Moreover, PM10 enhances the gene expression and release of pro-inflammatory cytokines in PBMCs, particularly IL-1ß; and induces the formation of ASC complexes in a dose-dependent manner. In vivo, PM10 exposure led to cell recruitment to the lungs, which was characterized by a significant increase in polymorphonuclear cells compared to control animals. Furthermore, PM10 induces the expression of several inflammatory response-related genes, such as NLRP3, IL-1ß and IL-18, within lung tissue. CONCLUSION: Briefly, PM10 exposure reduced the viability of primary cells and triggered an inflammatory response, involving NLRP3 inflammasome activation and the subsequent production of IL-1ß. Moreover, PM10 induces the recruitment of cells to the lung and the expression of multiple cytokines; this phenomenon could contribute to epithelial damage and, thus to the development and exacerbation of respiratory diseases such as viral infections.

20.
J Chem Neuroanat ; 129: 102237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736441

RESUMO

The number of people diagnosed with metabolic syndrome (MetS) has increased dramatically to reach alarming proportions worldwide. The origin of MetS derives from bad eating habits and sedentary lifestyle. Most people consume foods high in carbohydrates and saturated fat. In recent years, it has been reported that alterations in insulin at the brain level could have an impact on the appearance of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, dementia, depression, and other types of disorders that compromise brain function. These alterations have been associated with damage to the structure and function of neurons located in the reptilian and limbic systems, a decrease in dendritic arborization and an exacerbated inflammatory state that impaired learning and memory and increased in the state of stress and anxiety. Although the molecular mechanisms induced by MetS to cause neurodegeneration are not fully understood. The aim of this study is to know the effect of the intake of hypercaloric diets on the structure and function of neurons located in the frontal cortex, hypothalamus and hippocampus and its impact on behavior in rats with metabolic syndrome. In conclusion, the present study illustrated that chronic exposure to hypercaloric diets, with a high content of sugars and saturated fatty acids, induces a proinflammatory state and exacerbates oxidative stress in brain regions such as the hypothalamus, hippocampus, and frontal cortex, leading to dysfunction. metabolism, neuronal damage, and recognition memory loss.


Assuntos
Doença de Alzheimer , Síndrome Metabólica , Animais , Ratos , Carboidratos , Dieta , Dieta Hiperlipídica , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Neurônios/metabolismo , Transtornos da Memória/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA