Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 464, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919981

RESUMO

BACKGROUND: Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. RESULTS: High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. CONCLUSIONS: The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.


Assuntos
Secas , Interação Gene-Ambiente , Fotossíntese/genética , Pinus/genética , Pinus/metabolismo , Locos de Características Quantitativas , Estresse Fisiológico/genética , Alelos , Mapeamento Cromossômico , Biologia Computacional , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Genoma de Planta , Genômica , Escore Lod , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24256179

RESUMO

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Assuntos
Biotecnologia , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Cruzamento , DNA Complementar/genética , Bases de Dados Genéticas , Tamanho do Genoma , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Árvores
3.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931075

RESUMO

Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.

4.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005345

RESUMO

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

5.
Methods Mol Biol ; 1456: 99-112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27770361

RESUMO

Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Ilhas de CpG
6.
Tree Physiol ; 35(9): 1000-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093373

RESUMO

We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.


Assuntos
Arabidopsis/genética , Celulase/genética , Pinus/enzimologia , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cruzamento , Genoma de Planta , Haplótipos/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Pinus/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
7.
PLoS One ; 9(8): e103145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084460

RESUMO

There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.


Assuntos
Epigênese Genética , Variação Genética , Pinus/genética , Análise por Conglomerados , Metilação de DNA , Florestas , Marcadores Genéticos , Genética Populacional , Genótipo , Pinus/classificação , Polimorfismo Genético
8.
Plant Physiol ; 134(4): 1708-17, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15064380

RESUMO

Heat shock, and other stresses that cause protein misfolding and aggregation, trigger the accumulation of heat shock proteins (HSPs) in virtually all organisms. Among the HSPs of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. We analyzed the occurrence of sHSPs in vegetative organs of Castanea sativa (sweet chestnut), a temperate woody species that exhibits remarkable freezing tolerance. A constitutive sHSP subject to seasonal periodic changes of abundance was immunodetected in stems. This protein was identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry and internal peptide sequencing as CsHSP17.5, a cytosolic class I sHSP previously described in cotyledons. Expression of the corresponding gene in stems was confirmed through cDNA cloning and reverse transcription-PCR. Stem protein and mRNA profiles indicated that CsHSP17.5 is significantly up-regulated in spring and fall, reaching maximal levels in late summer and, especially, in winter. In addition, cold exposure was found to quickly activate shsp gene expression in both stems and roots of chestnut seedlings kept in growth chambers. Our main finding is that purified CsHSP17.5 is very effective in protecting the cold-labile enzyme lactate dehydrogenase from freeze-induced inactivation (on a molar basis, CsHSP17.5 is about 400 times more effective as cryoprotectant than hen egg-white lysozyme). Consistent with these observations, repeated freezing/thawing did not affect appreciably the chaperone activity of diluted CsHSP17.5 nor its ability to form dodecameric complexes in vitro. Taken together, these results substantiate the hypothesis that sHSPs can play relevant roles in the acquisition of freezing tolerance.


Assuntos
Aclimatação/fisiologia , Fagaceae/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/genética , Aclimatação/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Fagaceae/genética , Fagaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA